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Preface

It’s difficult to imagine our world today without technology. Every
aspect of our lives is supported, governed, and enhanced by com‐
puting systems and electronic devices. The food we eat, the products
we consume, the cars we drive, our health, and the ever-changing
world of instant news, information, and entertainment are all cre‐
ated, supplied, optimized, and paid for through digital technologies.

Underpinning this technological revolution is data. Every interac‐
tion creates data, and we can use that data for great good – to under‐
stand our desires, cure our ills, and generally improve our lives.
Those businesses that are not data-driven are feeling competitive
pressure to become so. However, it is no longer good enough just to
have data. If that data is old, or is not acted on fast enough, it can
also spell the downfall of even the best-intentioned organization.

We are in the midst of a vast digital transformation in which even
the most conservative enterprises are modernizing through technol‐
ogy – and the data it generates – to optimize their processes, outper‐
form their competitors, and better serve their customers.

But what, exactly, is data, why is it so valuable, and how can your
company make the best use of it? An even more important question:
what is the best way to modernize the way you use and manage
data?

To answer these questions and explain why streaming integration
and working with real-time data is such an important part of this
modernization, we need to start at the very beginning, and then
travel to the future of what’s possible.
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This book will explain data modernization through streaming inte‐
gration in detail to help organizations understand how it can be
applied to solve real-world business problems. We begin with a his‐
tory of data: what is it? How have we traditionally gathered and
worked with it? How do we currently manage the real-time data that
is being generated at volumes almost beyond our comprehension?
We then introduce the idea of real-time streaming integration: what
it is and why it is so critical to businesses today.

In the rest of the book, we examine the steps businesses must take to
reap value from streaming integration. We start with building
streaming data pipelines and then proceed to stream processing
(getting the data into the form that is needed) and streaming analyt‐
ics. We wrap up the book talking about data delivery and visualiza‐
tion, and, finally, about the mission-critical nature of data.

By the end of this book, you will not only understand the impor‐
tance of streaming integration to deriving value out of real-time
data, you will have a sense of what to look for in a streaming integra‐
tion platform to realize that value through streaming implementa‐
tions that address real-world business challenges.

Acknowledgments
We would like to acknowledge several people who helped us make
this book a success. First, we would like to express our deep grati‐
tude to Alice LaPlante and the editorial staff at O’Reilly for making
the authoring process as easy and painless as possible.

Of course, none of this would be possible without the support and
shared vision of our cofounders Ali Kutay and Sami Akbay, and the
employees of Striim who work hard to bring the vision of streaming
technologies to the enterprise.

We would especially like to thank Katherine Rincon and Irem Rad‐
zik for their project management and editorial review of the book.
Their objective pairs of eyes helped give us a continuous flow of rich
information in a consistent tone.

Finally, we would like to share our appreciation with our families for
allowing us to work on yet another project that, at times, took us
away from what we enjoy most – being with them.

viii | Preface



Introduction

Data has existed since the early Mesopotamians began recording
their goods, trades, and money flow, more than seven thousand
years ago. Data is quite simply the representation of facts, with a sin‐
gle datum being a single fact. The first data analytics – the process
by which data can be translated into information, knowledge, and
actions – was most likely the same ancient people determining
whether they had a surplus of animals or grains at the end of a sea‐
son, and using that to decide whether to sell or buy.

The first general-purpose programmable computer designed to
work with data was the Electronic Numerical Integrator and Com‐
puter, or ENIAC, which powered on in 1945 and was controlled by
switches and dials with data fed into it via punch cards. It was used
for diverse tasks such as helping to develop the hydrogen bomb,
design wind tunnels, and predict weather. It didn’t, however, manage
or store data. It wasn’t until the 1960s that a true data management
and processing system, or database, would be created.

Although computers had previously been used for automating man‐
ual accounting tasks, and complex control systems, the Semi-
Automated Business Research Environment (SABRE) airline
reservation system of the 1960s was the first true transactional data‐
base system. This system ensured single booking of seats and han‐
dled more than 80,000 calls per day by 1964.

At that time, data was mostly stored in a hierarchical (document-
like) structure. In 1970 Edgar Codd of IBM wrote a paper describing
a relational system for storing data, and showed how it could not
only handle creating, updating, and deleting data, but be used for
querying it. Codd’s system consisted of tables that represented
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entities, such as organizations and people, and the relationships
between the entities. IBM started a research project called System R
to implement Codd’s vision, and created Structured Query Lan‐
guage, or SQL, as the language for working with data.

Inspired by Codd’s vision, Eugene Wong and Michael Stonebraker
of the University of California, Berkeley, created the INteractive
Graphics REtrieval System (INGRES) as the first commercial SQL-
based relational database management system (RDBMS), which was
distributed as source code to many universities at a nominal cost.

During the 1980s, RDBMSs became increasingly popular. INGRES
spawned multiple commercial offerings including Sybase, Microsoft
SQL Server, and NonStop SQL, while System R resulted in the IBM
SQL/DS (later Db2) and Oracle databases. These databases became
the storage and retrieval systems for operational business software
applications used for supply chain, inventory management, cus‐
tomer relationships, and others which became packaged together as
Enterprise Resource Planning (ERP) systems. These Online Transac‐
tion Processing (OLTP) systems became the backbone of industry.

However, to analyze data and provide businesses with insights in
what were known as decision-support systems, a different solution
was required. The data warehouse was created, starting with Tera‐
data in 1983, to be the home of all enterprise data across multiple
systems, with an architecture and data structure that facilitated fast
and complex queries. Additional software was created to feed data
warehouses using batch processing from operational systems
through a process involving the extraction, transformation, and load‐
ing (ETL) of data.

Further software emerged that could analyze, visualize, and produce
reports on this data, and in 1989 the term business intelligence (BI)
was used to describe packages from Business Objects, Actuate, Crys‐
tal Reports, and MicroStrategy.

This rise of the World Wide Web in the 1990s changed all of this.
The interaction of millions, and soon billions, of people across mil‐
lions of websites generated exponentially more data, and in different
forms, than the structured, limited-user, operational business sys‐
tems. In 2003, the notion of the “Three Vs” – volume, velocity, and
variety – of data was coined to express the change in the nature of
data the web had introduced. New technology was required to deal
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with this, and Hadoop was invented in 2006 as a way to scale data
storage and analytics for this new big data paradigm.

A Batch of Problems
Databases have thus been the predominant source of enterprise data
for decades. The majority of this data came from manual human
entry within applications and web pages, with some automation.
Data warehouses, fed by batch-oriented ETL systems, provided busi‐
nesses with analytics. However, in the past 10 years or so, businesses
realized that machine data, logs produced by web servers, network‐
ing equipment, and other systems could also provide value. This
new unstructured data, generated by an ever-increasing variety of
sources, needed newer big data systems to handle it as well as differ‐
ent kinds of analytics.

Both of these waves were driven by the notion that storage was
cheap and, with big data, almost infinite, whereas CPU and memory
were expensive. As a result, the movement and processing of data
from sources to analytics was done in batches, predominantly by
ETL systems. Outside of specific industries that required real-time
actions, such as equipment automation and algorithmic trading, the
notion of truly real-time processing was seen as expensive, compli‐
cated, and unnecessary for traditional business operations. However,
batch processing is crumbling under the strain of competing
modern business objectives, shrinking batch windows in a 24/7
world where businesses hunger for up-to-the-second information.

Under Pressure
Business leaders around the world must balance a number of com‐
peting pressures to identify the most appropriate technologies,
architectures, and processes for their business. Although cost is
always an issue, this needs to be measured against the rewards of
innovation. Risks of failure versus the status quo must also be
considered.

This leads to cycles for technology, with early adopters potentially
leapfrogging their more conservative counterparts, who might not
then be able to catch up if they wait for full technological maturity.
In recent years, the length of these cycles has been dramatically
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reduced, and formerly solid business models have been disrupted by
insightful competitors – or outright newcomers.

Data management and analytics are not immune to this trend, and
the increasing importance of relevant, accurate, and timely data has
added to the risk of maintaining the status quo.

Business look at data modernization to solve problems such as:

• How do we move to scalable, cost-efficient infrastructures such
as the cloud without disrupting our business processes?

• How do we manage the expected or actual increase in data vol‐
ume and velocity?

• How do we work in an environment with changing regulatory
requirements?

• What will be the impact and use cases for potentially disruptive
technologies like artificial intelligence (AI), blockchain, digital
labor, and the Internet of Things (IoT), and how do we incorpo‐
rate them?

• How can we reduce the latency of our analytics to provide busi‐
ness insights faster and drive real-time decision making?

It is clear that the prevalent legacy and predominantly batch method
of doing things might not be up to the task of solving these prob‐
lems, and a new direction is needed to move businesses forward.
But the reality is that many existing systems cannot be just ripped
out and replaced with shiny new things without severely affecting
operations.

Time Value of Data
Much has been written about the “time value of data” – the notion
that the worth of data drops quickly after it is created. We can also
presume from this notion that if the process of capturing, analyzing,
and acting on that information can be accelerated, the value to the
business will increase. Although this is often the case and the move
to real-time analysis is a growing trend, this high-level view misses
many nuances that are essential to planning an overall data strategy.

A single piece of data can provide invaluable insight in the first few
seconds of its life, indicating that it should be processed rapidly in a
streaming fashion. However, that same data, when stored and aggre‐
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gated over time alongside millions of other data points, can also
provide essential models and enable historical analysis. Even more
subtly, in certain cases, the raw streaming data has little value
without historical or reference context – real-time data is worthless
unless older data is also available.

There are also cases for which the data value effectively drops to
zero over a very short period of time. For these perishable insights, if
you don’t act upon them immediately, you have lost the opportunity
to do so. The most dramatic examples are detecting faults in, say,
power plants or airplanes to avoid catastrophic failure. However,
many modern use cases – prevention, real-time offers, real-time
resource allocation, and geo-tracking, to name a few – are also
dependent on up-to-the-second data.

Historically, the cost to businesses to move to real-time analytics has
been prohibitive, so only the truly extreme cases (such as preventing
explosions) were handled in this way. However, the recent introduc‐
tion of streaming integration platforms (as explained in detail
throughout this book) has made such processing more accessible.

Data variety and completeness also play a big part in this landscape.
To have a truly complete view of your enterprise, you need to be able
to analyze data from all sources, at different timescales, in a single
place. Data warehouses were the traditional repository of all data‐
base information for long-term analytics, and data lakes (powered
by Hadoop) have matured to perform a similar function for semi-
structured log and device data. If you wanted to analyze the same
data in real time, you needed additional systems given that both the
warehouse and the lake are typically batch fed with latencies meas‐
ured in hours or days.

The ideal solution would collect data from all the sources (including
the databases), move it into a data lake or scalable cloud data ware‐
house (for historical analysis and modeling), and also provide the
capabilities for real-time analysis of the data as it’s moving. This
would maximize the time-value of the data from both immediate
and historical perspectives.
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The Rise of Real-Time Processing
Fortunately, CPU and memory have become much more affordable,
and what was unthinkable 10 years ago is now possible. Streaming
integration makes real-time in-memory stream processing of all
data a reality, and it should be part of any data modernization plans.
This does not need to happen overnight, but can be applied on a
use-case-by-use-case basis without necessitating ripping and replac‐
ing existing systems.

The most important first step enterprises can make today is to uti‐
lize streaming integration to move toward a streaming-first architec‐
ture. In a streaming-first architecture, all data is collected in a real-
time, continuous fashion. Of course, companies can’t modernize
overnight. But the ability to do continuous, real-time data collection
enables organizations to integrate with legacy technologies. At the
same time, they can reap the benefits of a modern data infrastruc‐
ture capable of meeting the ever growing business and technology
demands within the enterprise.

When data is being streamed, the solutions to the problems men‐
tioned earlier become more manageable. Database-change streams
help keep cloud databases synchronized with those on-premises
while moving to a hybrid cloud architecture. In-memory edge pro‐
cessing and analytics can scale to huge data volumes and be used to
extract the information content from data. This massively reduces
its volume prior to storage. Streaming systems with self-service ana‐
lytics can help companies be agile and nimble, and continuously
monitoring systems can ensure regulatory compliance. Of course,
new technologies become much easier to integrate if, instead of
separate silos and data stores, you have a flexible streaming data dis‐
tribution mechanism that provides low-latency capabilities for real-
time insights.

In summary, data modernization is becoming essential for busi‐
nesses focused on operational efficiency, customer experience, and
gaining a competitive edge. This book will explain in detail data
modernization through streaming integration to help you under‐
stand how you can apply it to solve real-world business problems.

xiv | Introduction



CHAPTER 1

Streaming Integration

Streaming integration is the real-time continu‐
ous collection and movement of any enterprise
data, handling extreme volumes, at scale, with
high throughput and low latency. Processing,

analysis, correlation, and delivery of data hap‐
pen in flight, giving data value and visibility, in

a reliable and verifiable fashion (Figure 1-1).

Before we go into depth about what is required to achieve streaming
integration, it’s important to understand each of the concepts
emphasized (in italics) in this definition. In this chapter, you learn
why each of these ideas is important and how streaming integration
is not complete without all of them present.

Figure 1-1. Concepts behind streaming integration
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Real Time
The overarching principle of streaming integration is that every‐
thing happens in real time. There is no delay between data being
created, collected, processed, delivered, or viewed such as might be
present in traditional Extract, Transform, and Load (ETL) systems
or any architecture that uses storage as an intermediary.

This notion means that data must be collected within micro- or
milliseconds of being generated. If an organization wants instant
insight into its business, any lag will prevent it from understanding
what is happening right now.

Continuous Collection
Streaming integration begins with a streaming-first approach to data.
Unlike ETL, which runs batch processes as scheduled jobs against
already stored data, streaming data collection must be continuous
(running forever) and in real time. It involves collecting data as soon
as possible after it’s created and before it ever hits a disk. Although
some data sources, like message queues and Internet of Things (IoT)
devices, can be inherently streaming and push new data immedi‐
ately, other sources might need special treatment.

We can think of databases as a historical record of what happened in
the past. Accessing data from databases through SQL queries is
resource-intensive and uses data already stored on disk. To get real-
time information from a database you need a technology called
change data capture (CDC) that directly intercepts database activity
and collects every insert, update, and delete immediately, with very
low impact to the database.

Files, whether on disk or in a distributed or cloud filesystem, also
cannot be treated as a batch. Collecting real-time file data requires
reading at the end of the file and streaming new records as soon as
they are written.

Continuous Movement
The result of this continuous collection is a set of data streams.
These streams carry the data in real time through processing pipe‐
lines and between clustered machines, on-premises and in the
cloud. They are used as both the mechanism to continuously
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process data as it is created and move it from its point of genesis to a
final destination.

For speed and low latency, these streams should mostly operate in
memory, without writing to disk, but should be capable of persis‐
tence when necessary for reliability and recovery purposes.

Any Enterprise Data
Data is generated and stored in a lot of different ways within an
enterprise, and requires a lot of different techniques to access it.
We’ve already mentioned databases, files, message queues, and IoT
devices, but that only scratches the surface. Adding to this list are
data warehouses; document, object, and graph databases; distributed
data grids; network routers; and many software as a service (SaaS)
offerings. All of these can be on-premises, in the cloud, or part of a
hybrid-cloud architecture.

For each of these categories, there are numerous providers and
many formats. Files alone can be written several different ways,
including using delimited text, JSON, XML, Avro, Parquet, or a ple‐
thora of other formats.

The integration component of streaming integration requires that
any such system must be capable of continuously collecting real-
time data from any of these enterprise sources, irrespective of the
type of data source or the format the data is in.

Extreme Volumes
When considering data volumes, figures are often quoted in tera-,
peta-, or exabytes, but that is the total amount of stored data. We
need to think of data volumes for streaming systems differently.
Specifically, we need to consider them in terms of the rate at which
new data is generated.

The metrics used can be based on the number of new events or the
number of bytes created within a certain time period.

For databases, this can be in the order of tens to hundreds of giga‐
bytes per hour stored in transaction logs recording inserts, updates,
and deletes – even if the total amount of data stored in the database
doesn’t change very much. Security, network devices, and system
logs from many machines can easily exceed tens to hundreds of
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billions of events per day. Many of these logs are discarded after a
certain period, so the volume on disk stays fairly constant, but the
new data generation rate can be terabytes per day.

There are physical limits to how fast data can be written to disk: on
the order of 50 to 100 MBps for magnetic spinning disks, and 200 to
500 MBps for solid-state drives (SSDs). Large-scale enterprise sys‐
tems often have parallel systems to achieve higher throughput. The
largest data generation rates, however, occur when a disk is not
involved at all. Reading directly from network ports using protocols
such as Transmission Control Protocol (TCP), User Datagram Pro‐
tocol (UDP), or HyperText Transfer Protocol (HTTP) can achieve
higher data volumes up to the speed of the network cards, typically 1
to 10 GBps.

Real-time continuous data collection and the underlying streaming
architecture need to be able to handle such data volumes, reading
from disk and ports as the data is being generated while imposing
low resource usage on the source systems.

At Scale
Scaling streaming integration falls into a number of broad cate‐
gories, which we dig into deeper later on. Aside from scaling data
collection to hundreds of sources, scaling of processing, and han‐
dling in-memory context data also needs to be considered.

Streaming integration solutions need to scale up and out. They need
to make use of processor threads and memory on a single machine
while distributing processing and in-memory storage of data across
a cluster. With many distributed nodes within a scaled cluster, it
becomes essential that the streaming architecture for moving data
between nodes is highly efficient, and can make use of all available
network bandwidth.

High Throughput
Dealing with high volumes, at scale, requires that the entire system
be tuned to handle enormous throughput of data. It is not sufficient
to just be able to keep up with the collection of huge amounts of
data as it’s generated. The data also needs to be moved, processed,
and delivered at the same rate to eliminate any lag with respect to
the source data.

4 | Chapter 1: Streaming Integration



This involves being able to individually scale the collection, process‐
ing, and delivery aspects of the system as required. For example, col‐
lecting and transforming web logs for delivery into a cloud-based
data warehouse might require hundreds of collection nodes, tens of
processing nodes, and several parallel delivery nodes, each utilizing
multiple threads.

In addition, every aspect of the system needs to be tuned to employ
best practices ensuring optimal use of CPU and minimal use of
input/output (I/O). In-memory technologies are best suited to this
task, especially for processing and data movement. However, persis‐
tent data streams might need to be employed sparingly for reliability
and recovery purposes.

Low Latency
Latency – or how long the results of a pipeline lag behind the data
generation – is not directly related to throughput or scale. It is possi‐
ble to have a throughput of millions of events per second and yet
have a high latency (not the microseconds you would expect). This
is because data might need to travel through multiple steps in a
pipeline, move between different machines, or be transmitted
between on-premises systems and the cloud.

If the goal is to minimize latency, it is necessary to limit the process‐
ing steps, I/O, and network hops being utilized. Pipelines that
require many steps to achieve multiple simple tasks will have more
latency than those that use a single step, rolling the simpler tasks
into a single, more complex one. Similarly, architectures that use a
hub-and-spoke model will have more latency than point-to-point.

A goal of streaming integration is to minimize latency while maxi‐
mizing throughput and limiting resource consumption. Simple top‐
ologies, such as moving real-time data from a database to the cloud,
should have latencies in milliseconds. Adding processing to such
pipelines should only marginally increase the latency.

Processing
It is rare that source data is in the exact form required for delivery to
a heterogenous target, or to be able to be used for analytics. It is
common that some data might need to be eliminated, condensed,
reformatted, or denormalized. These tasks are achieved through
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processing the data in memory, commonly through a data pipeline
using a combination of filtering, transformation, aggregation and
change detection, and enrichment.

Filtering
Filtering is a very broad capability and uses a variety of techniques.
It can range from simple (only allow error and warning messages
from a log file to pass through), intermediate (only allow events that
match one of a set of regular expressions to pass through), to com‐
plex (match data against a machine learning model to derive its rele‐
vance and only pass through relevant data). Because filtering acts on
individual events – by either including or excluding them – it’s easy
to see how we can apply this in real time, in-memory, across one or
more data streams.

Transformation
Transformations involve applying some function to the data to
modify its structure. A simple transformation would be to concate‐
nate FirstName and LastName fields to create a FullName. The per‐
mutations are endless, but common tasks involve things like:
converting data types, parsing date and time fields, performing
obfuscation or encryption of data to protect privacy, performing
lookups based on IP address to deduce location or organization
data, converting from one data format to another (such as Avro to
JSON), or extracting portions of data by matching with regular
expressions.

Aggregation and Change Detection
Aggregation is the common term for condensing or grouping data,
usually time-series data, to reduce its granularity. This can involve
basic statistical analysis, sampling, or other means that retain the
information content, but reduce the frequency of the data. A related
notion is change detection which, as the name suggests, outputs data
only when it changes. The most appropriate technique depends on
the source data and use case.

Aggregation of data, by definition, occurs over multiple events. As
such, the scope of aggregation is usually a window of time or
defined by other rules to retain events. Aggregation is therefore
more memory intensive than filtering given that thousands or
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millions of events need to be kept in memory and aggregation
requires some sizing to determine hardware requirements for edge
devices.

Enrichment
Enrichment of data can also be essential for database, IoT, and other
use cases. In many instances, the raw data might not contain suffi‐
cient context to be deemed useful. It could contain IDs, codes, or
other data that would provide little value to downstream analysts.
By joining real-time data with some context (about devices, parts,
customers, etc.), it’s turned into valuable information. Real-time
enrichment of data streams is akin to denormalization in the data‐
base world and typically increases the size of data, not decrease it.

Implementation Options
All of these processing tasks need to be accessible to those who build
streaming integration pipelines. And those who build pipelines need
to understand how to work with data. Here are some options for
how these tasks could be implemented:

• Have individual operators for each simple task, chained to per‐
form processing

• Use a programming language such as Java or Python to code the
processing

• Use a declarative language such as SQL to define the processing

It is possible to mix-and-match these techniques within a single
pipeline, but if you want to minimize processing steps, maximize
throughput, and reduce latency, utilizing a language such as SQL –
which compiles to high-performance code transparently – provides
a good compromise between ease of use, flexibility, and speed.

Analysis
Streaming integration provides more than just the ability to contin‐
ually move data between sources and targets with in-stream process‐
ing. After streaming data pipelines are in place, it’s possible to gain
instant value from the streaming data by performing real-time
analytics.
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This analysis can be in many forms but generally falls into a few
broad categories:

• Time-series and statistical analysis
• Event processing and pattern detection
• Real-time scoring of machine learning algorithms

Time-Series and Statistical Analysis
Time-series analysis can be performed naturally on streaming data
because streaming data is inherently multitemporal. That is, it can
be delineated according to multiple timestamps that can be used to
order the data in time. All data will have a timestamp corresponding
to when it was collected. In addition, certain collection mechanisms
may access an external timestamp, and the data itself can include
additional time information.

By keeping a certain amount of data in-memory, or utilizing incre‐
mental statistical methods, it is possible to generate real-time statis‐
tical measures such as a moving average, standard deviation, or
regression. We can use these statistics in conjunction with rules and
other context, which themselves can be dynamic, to spot statistically
anomalous behavior.

Event Processing and Pattern Detection
Event processing, or what used to be called complex event process‐
ing (CEP), enables patterns to be detected in sequences of events. It
is a form of time-series analysis, but instead of relying on statistics,
it looks for expected and unexpected occurrences. These often rely
on data within the events to specify the patterns.

For example, a statistical analysis could spot whether a temperature
changed by more than two standard deviations within a certain
amount of time. Event processing can utilize that and look for a pat‐
tern in which the temperature continues to increase while pressure
is increasing and flow rates are dropping, all within a specified
amount of time. Event processing is typically used where patterns
are known and describable, often derived from the results of previ‐
ous data analysis.
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Real-Time Scoring of Machine Learning Algorithms
Machine learning integration enables pretrained machine learning
models to be executed against streaming data to provide real-time
analysis of current data. Models could be used for classification, pre‐
dictions, or anomaly detection. We can use this type of analysis with
data that contains many variables, behaves periodically, or for which
patterns cannot be specified, only learned.

The great benefit of performing analytics within streaming integra‐
tion data flows is that the results, and therefore the business insights,
are immediate – enabling organizations to be alerted to issues and
make decisions in real time.

Correlation
Many use cases collect real-time data from multiple sources. To
extract the most value from this data, it might be necessary to join
this data together based on the relationship between multiple data
streams, such as the way it is correlated through time, data values,
location, or more complex associations.

For example, by correlating machine information, such as CPU
usage and memory, with information in application logs, such as
warnings and response times, it might be possible to spot relation‐
ships that we can use for future analytics and predictions.

The most critical aspects of correlation are: first, that it should be
able to work across multiple streams of data. Second, it needs to be
flexible in the rules that define correlated events and be simple to
define and iterate. Ultimately, this means continuous delivery must
be considered.

Continuous Delivery
After data has been collected, processed, correlated, and analyzed,
the results almost always must be delivered somewhere. That “some‐
where” could be a filesystem, database, data warehouse, data lake,
message queue, or API, either on-premises or in the cloud. The only
exception is when the data is being used solely for in-memory
analytics.

Writing data should, wherever possible, also be continuous (not
batch) and support almost any enterprise or cloud target and data
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format. Similar to continuous collection, we should employ paralle‐
lization techniques to maximize throughput to ensure the whole
end-to-end pipeline does not introduce any lag. An important
aspect of delivery is that it should be possible to ensure that all
applicable source data is written successfully, once and only once.

Value
The goal of any form of data processing or analytics is to extract
business value from the data. The value of data depends on its
nature, and it’s important to differentiate between data and informa‐
tion. Although these terms are often used interchangeably, they
should not be. Data is a collection of unprocessed facts, whereas
information is data processed in such a way as to give it value.

To maximize this value, we need to extract the information content,
and with time-sensitive data this needs to happen instantly, upon
collection. This can involve filtering out data, performing change
detection, enriching it with additional context, or performing ana‐
lytics to spot anomalies and make predictions. Streaming integra‐
tion enables this to happen before data is delivered or visualized,
ensuring that the value of data is immediately available to the busi‐
ness through visualizations and alerts.

Other patterns for adding value to data include combining both
batch and streaming technologies in a single architecture, which has
been termed Lambda processing. Streaming integration can both
feed an append-only data store used for batch analytics and machine
learning as well as provide real-time, in-memory analytics for
immediate insight. As an extension to this architecture, stream pro‐
cessing can join historical results to add context to streaming data or
invoke pretrained machine learning models to span both batch and
real-time worlds.

Visibility
As the name suggests, visibility is the way in which we can present
data to the user, often in an interactive fashion. This can involve vis‐
ualizations in the form of charts and tables, combined together in
dashboards. The dashboards and charts can be searchable, filterable,
and provide drilldown to secondary pages. As opposed to more tra‐
ditional BI software, streaming visualizations frequently show
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up-to-the-second information, but can also be rewound to show his‐
torical information.

Visibility in the context of streaming integration can mean one of
two things:

• Visibility into the data itself and the results of analytics
• Visibility into the data pipelines and integration flows

The former provides insight into business value, whereas the latter
gives an operational view of data collection, processing, and deliv‐
ery, including data volumes, lags, and alerts on anomalous behavior
within the data pipeline.

Reliable
It is essential for any system used for mission-critical business oper‐
ations to be reliable. This means that the system must do what you
expect it to do, operate continuously, and recover from failures.

In the scope of streaming integration, it is important to be able to
ensure exactly-once processing and delivery of data, independent of
the complexity of the flows. All data generated by a source must be
collected, processed, and reliably delivered to the target (Figure 1-2).
In the case of server, network, system, or other failures, the data
flows must recover and continue from where they left off – ensuring
that no data is missed and that all processed data is delivered only
once.

Additionally, if individual servers in a cluster fail, the system must
be capable of resuming data flows on other nodes to ensure contin‐
ual operations. Ideally, this should all happen transparently to the
user without necessitating the intervention of human operatives.
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Figure 1-2. Cloud ETL with reliability

Verifiable
Providing reliability guarantees is only half the story. It is also
increasingly necessary to be able to prove it and provide insight into
the process. Through data flow visibility – including data volumes,
number of events, last read and write points, and data lineage –
users need to be able to prove that all data that has been read has
been both processed and written.

Obviously, this varies by source and target, but the principle is that
you need to track data from genesis to destination and verify that it
has successfully been written to any targets. This information needs
to be accessible to business operations in the form of dashboards
and reports, with alerts for any discrepancies.

A Holistic Architecture
In summary, this chapter first defined streaming integration. It then
explained its key attributes, which include:

• Providing real-time continuous collection and movement of any
enterprise data

• Handling extreme volumes at scale
• Achieving high throughput and low latency
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• Enabling in-flight processing, analysis, correlation, and delivery
of data

• Maximizing both the value and visibility of data
• Ensuring data is both reliable and verifiable

Streaming Integration should start with a streaming-first approach
to collecting data, and then proceed to take advantage of all of these
attributes. Any platform that supports streaming integration must
provide all of these capabilities to address multiple mission-critical,
complex use cases. If any of these attributes are missing, the plat‐
form cannot be said to be true streaming integration.

In Chapter 2, we talk about the beginning of the streaming integra‐
tion pipeline: real-time continuous data collection.
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CHAPTER 2

Real-Time Continuous
Data Collection

As a starting point for all streaming integration solutions, data needs
to be continuously collected in real-time. This is referred to as a
streaming-first approach, and both streaming integration and
streaming analytics solutions cannot function without this initial
step. The way in which this is achieved varies depending on the data
source, but all share some common requirements:

• Collect data as soon as it is generated by the source
• Capture metadata and schema information from the source to

place alongside the data
• Turn the data into a common event structure for use in process‐

ing and delivery
• Record source position if applicable for lineage and recovery

purposes
• Handle data schema changes
• Scale through multithreading and parallelism
• Handle error and failure scenarios with recovery to ensure that

no data is missed

The following sections explain how we can implement these
requirements for a variety of different source categories – databases,
files and logs, messaging systems, cloud and APIs, and devices and
IoT – and will provide examples to clarify each case.
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Databases and Change Data Capture
A database represents the current state of some real-world applica‐
tion and is most meaningful in the context of transaction process‐
ing. Applications submit queries and updates from a number of
network endpoints that are managed as a series of transactions for
state observance and transition.

From the late 1970s to the beginning of this century, the term “data‐
base” has been commonly used to refer to a relational database in
which the underlying entities and relationships between those enti‐
ties are modeled as tables. Over the past two decades, this term has
become an umbrella term for relational database systems as well as
with the emerging NoSQL systems, which in turn also has become an
umbrella term for key-value stores, document stores, graph data‐
bases, and others. These databases can be centralized or distributed.
They can also be maintained on-premises or stored in the cloud.

However, since databases represent the current state of the data
within them, and querying them only returns that state, they are not
inherently suited to streaming integration through the query mech‐
anism. Another approach is required to turn the database into a
source of streaming data: CDC.

When applications interact with databases, they use inserts, updates,
and deletes to manipulate the data. CDC directly intercepts the data‐
base activity and collects all the inserts, updates, and deletes as they
happen, turning them into streaming events.

CDC Methods
Several CDC methods have been in use for decades, each with its
own merits depending on the use case. In high-velocity data envi‐
ronments in which time-sensitive decisions are made, low-latency,
reliable, and scalable CDC-powered data flows are imperative.

The business transactions captured in relational databases are criti‐
cal to understanding the state of business operations. Traditional
batch-based approaches to move data once or several times a day
introduce latency and reduce the operational value to the organiza‐
tion. CDC provides real-time or near-real-time movement of data
by moving and processing data continuously as new database events
occur. Moving the data continuously, throughout the day, also uses
network bandwidth more efficiently.
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There are several CDC methods to identify changes that need to be
captured and moved. Figure 2-1 illustrates the common methods.

Figure 2-1. Methods of CDC

Let’s discuss the advantages and shortcomings of CDC methods:

Timestamps
By using existing LAST_UPDATED or DATE_MODIFIED col‐
umns, or by adding one if not available in the application, you
can create your own CDC solution at the application level. This
approach retrieves only the rows that have been changed since
the data was last extracted. There might be issues with the integ‐
rity of the data in this method; for instance, if a row in the table
has been deleted, there will be no DATE_MODIFIED column
for this row and the deletion will not be captured. This
approach also requires CPU resources to scan the tables for the
changed data and maintenance resources to ensure that the
DATE_MODIFIED column is applied reliably across all source
tables.

Table differencing
By comparing the tables to be replicated in the source and target
systems by running a diff, this approach loads only the data that
is different to enable consistency. Although this works better for
managing deleted rows, the CPU resources required to identify
the differences is significant and the requirement increases in
line with the volume of data. The diff method also introduces
latency and cannot be performed in real time.

Triggers
Another method for building CDC at the application level is
defining triggers and creating your own change log in shadow
tables. Triggers fire before or after INSERT, UPDATE, or
DELETE commands (that indicate a change) and are used to
create a change log. Operating at the SQL level, some users pre‐
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fer this approach. However, triggers are required for each table
in the source database, and they have greater overhead associ‐
ated with running triggers on operational tables while the
changes are being made. In addition to having a significant
impact on the performance of the application, maintaining the
triggers as the application change leads to management burden.
Many application users do not want to risk the application
behavior by introducing triggers to operational tables.

Log-based CDC
Databases contain transaction (sometimes called redo) logs that
store all database events allowing for the database to be recov‐
ered in the event of a crash. With log-based CDC, new database
transactions – including inserts, updates, and deletes – are read
from source databases’ transaction or redo logs. The changes
are captured without making application-level changes and
without having to scan operational tables, both of which add
additional workload and reduce the source systems’ perfor‐
mance.

Log-Based CDC Best Suited for Streaming Integration
CDC and, in particular, log-based CDC (Figure 2-2), has become
popular in the past two decades as organizations have discovered
that sharing real-time transactional data from Online Transaction
Processing (OLTP) databases enables a wide variety of use-cases.
The fast adoption of cloud solutions requires building real-time data
pipelines from in-house databases in order to ensure that the cloud
systems are continually up to date. Turning enterprise databases into
a streaming source, without the constraints of batch windows, lays
the foundation for today’s modern data architectures.
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Figure 2-2. Log-based CDC

Streaming integration should utilize log-based CDC for multiple
reasons. It minimizes the overhead on the source systems, reducing
the chances of performance degradation. In addition, it is nonintru‐
sive. It does not require changes to the application, such as adding
triggers to tables would do. It is a lightweight but also a highly per‐
formant way to ingest change data. Although Data Manipulation
Language (DML) operations (inserts, updates, deletes) are read from
the database logs, these systems continue to run with high perfor‐
mance for their end users.

The ingestion of change data through CDC is only the first, but
most important, step. In addition, the streaming integration plat‐
form needs to incorporate the following:

• Log-based CDC from multiple databases for nonintrusive, low-
impact real-time data ingestion to minimize CPU overhead on
sources and not require application changes.

• Ingestion from multiple, concurrent data sources to combine
database transactions with semi-structured and unstructured
data.
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• End-to-end change data integration, including:

Zero data loss guarantee
Data loss cannot be tolerated by a downstream application
due to the nature of data tracked in database systems. This
means that if the external database system or the CDC pro‐
cess fails, event checkpointing must guarantee oldest active
events of interest are carefully tracked by the CDC process.

Event delivery guarantees
Exactly-once processing (E1P) and/or at-least-once pro‐
cessing guarantees must be preserved. This requires an
understanding of consuming systems and the atomicity
semantics they support.

Ordering guarantees
Events are propagated in commit order or in generation
order. So, data that’s generated in transactional order must
be able to retain that order and at source side transactional
boundaries as required.

Transaction integrity
When ingesting change data from database logs, the com‐
mitted transactions should have their transactional context
maintained. Throughout the whole data movement, pro‐
cessing, and delivery steps, this transactional context
should be preserved so that users can create reliable replica
databases.

In-flight change data processing
Users should be able to filter, aggregate, mask, transform,
and enrich change data while it is in motion, without losing
transactional context.

Schema change replication
When a source database schema is modified and a Data
Definition Language (DDL) statement is created, the
streaming integration platform should be able to apply the
schema change to the target system without pausing.

• Turning change data to time-sensitive insights. In addition to
building real-time integration solutions for change data, it
should be possible to perform streaming analytics on the
change data to gain immediate insights.
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Log-based CDC is the modern way to turn databases into streaming
data sources. However, ingesting the change data is only the first of
many concerns that streaming integration solutions should address.

Files and Logs
Many applications such as web servers, application servers, IoT edge
servers, or enterprise applications continually generate data records
that are written to files or logs. These files can be on a local disk sub‐
system, a distributed filesystem, or in a cloud store.

This data contains valuable information needed for operational ana‐
lytics. In batch processing Extract, Transform, and Load (ETL) sys‐
tems, these files are written to and closed before being read by ETL.
However, for real-time systems it is essential to be able to perform
real-time data collection on files that are currently being written to
(open files).

Data Collection from Filesystems
Collecting real-time file data requires a set of algorithms to detect
changes to the files/directories/nodes:

• Understanding the contents of the underlying file formats to be
able to parse the file records

• Maintaining position offsets to reflect the current EOF (end of
file) markers for subsequent collection

• Identifying torn/partial records
• Recovery handling to address various failure scenarios

Traditional ETL has successfully managed to extract data from files
after a file is complete. But for real-time processing, new records
need to be collected as soon as they are written to keep the propaga‐
tion latency at a lower granularity than the file size.

There are several common patterns that occur in real-time stream
processing during ongoing file generation that need to be supported
and pose significant technical challenges. Some examples include
the following:
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• Support for multiple filesystems including Linux (ext*), Win‐
dows (NTFS), Hadoop (HDFS), network based (NFS), Cloud
Storage systems (AWS S3, Azure ADLS, Google GCS, etc.).

• Support for multiple file formats such as JSON, DSV, XML,
Avro, Thrift, Protocol Buffers, and Binary.

• Support for reading from multiple directories and subdirecto‐
ries from which files need to be read. It’s not always possible to
have one central repository where all files can be generated.

• Support for data parsing using static and dynamic record
delimiters.

• Support for data collection using wildcarding at the levels of
files and directories.

• Support for data collection when files are in sequence and roll‐
over to the base sequence.

• Managing the number of open file descriptors.
• Event guarantees with respect to data loss, at-least-once, or at-

most-once processing.
• Handling schema changes.

Messaging Systems
Of all the types of sources that can provide data for streaming inte‐
gration, messaging systems are the most natural fit. They are inher‐
ently real time, and push data to consumers. In fact, messaging
systems are often a required component of a streaming integration
solution, being necessary for the continuous movement of data.

Messaging systems usually consist of producers that deliver messages
to brokers to be read by consumers. To continuously collect data
from a messaging system, the streaming integration solution needs
to be able to connect to a broker as a consumer.

With the rapid increase in the adoption of cloud technologies in the
past few years, messaging systems have also been introduced by
cloud providers. Microsoft Azure Event Hubs, Amazon Kinesis, and
Google Pub/Sub all provide cloud-based messaging platforms that
are designed to elastically scale and support streaming and message-
driven applications in the cloud.
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Because heterogeneous integration and the collection of data from
any enterprise (or cloud system) is an essential part of streaming
integration, you need to consider all of these different types of mes‐
saging systems. Scalability of continuous collection is key given that
most of these systems can handle tens of thousands to millions of
messages per second.

Data Collection from Messaging Systems
There are two major considerations when working with messaging
systems. First, the system needs to connect to the messaging pro‐
vider and subscribe to receive messages utilizing some API. There
are often security, compression, encryption, and architectural pieces
to this that need to be resolved within a messaging adaptor.

Second, data needs to be extracted from the message. In addition to
a data payload that can be in text, binary, key-value, or other forms,
there are additional system and header properties that can contain
useful information.

Different messaging systems require different APIs. Aside from
Kafka, which has its own API, a good majority of messaging systems
support the JMS API or AMQP protocol.

Collecting data from Java Message Service systems
When connecting to Java Message Service (JMS) systems, you need
to first create an initial context that contains information about con‐
necting to the provider, such as broker URL and security credentials.
This information varies by provider. From this, you can obtain a
connection factory either directly, or by looking up the service
through Java Naming and Directory Interface (JNDI). The factory
then allows you to create a connection to the provider and create a
session through which you will send and receive messages.

For data collection, the interest is in receiving messages and these
can be either from queues or topics. Queues are typically point-to-
point and only one consumer will receive a message sent to a queue.
Topics provide a publish/subscribe topology in which every sub‐
scriber will receive a copy of a published message. Queues and top‐
ics each have their own separate issues in the areas of scalability and
reliability.
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Because queues allow only a single consumer to receive a copy of a
message, it is impossible to use an existing queue as a data source
without breaking any existing data flow. Instead additional queues
(or topics) need to be added with existing messages also routed to
these new destinations.

Reading from queues has delivery guarantees that will ensure all
messages are seen, but this might require persistent options to han‐
dle failure scenarios. Topics are more suited for data collection
because they can have multiple subscribers. However, it is important
that such subscribers are durable. This means that messages are kept
until every subscriber has received them; otherwise they will just be
discarded.

The biggest problem with collecting JMS data is recovery. Although
JMS supports transactions, it does not permit repositioning, or
rewinding within a queue or topic. In complex stateful processing
pipelines utilizing windows or event buffers, recovery often requires
replaying old events, which is not possible using the JMS API.

Collecting data from Apache Kafka
Apache Kafka is a high-throughput distributed messaging system. It
utilizes a publish/subscribe mechanism and is inherently persistent,
writing all messages to a distributed commit log. Clients connect to
brokers as either producers or consumers, with producers sending
messages to topics and consumers receiving them as subscribers to
that topic. When a producer sends a message, it is stored in an
append-only log on disk. The broker can be clustered over a large
number of machines, with the data partitioned and replicated over
the cluster.

When producers send a message to a broker, a partition key is used
to determine which partition, and therefore which machines in a
cluster, need to write the data to the log, with each partition written
to a separate physical file. The broker can write the data to one or
more machines for reliability and failover purposes. The logs are
retained for a period of time, and consumers manage their own read
location in the log. This enables consumers to come and go, and run
at their own speeds without affecting other consumers.

Consumers belong to a consumer group, with each consumer in a
group being assigned to one or more partitions. Each consumer
group subscribed to a topic will receive all the messages sent to that
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topic, but the individual consumers in that group will receive only
those messages belonging to its partitions. There cannot be more
consumers than partitions, so deciding on a partitioning scheme for
a topic is an essential early consideration. Importantly, because each
consumer needs to keep track of the log position it is reading from,
it is possible for consumers to position backwards and replay old
messages, as long as they are retained on disk.

When collecting data from Kafka, it is important to consider both
scalability and reliability scenarios.

Scalability of reading from Kafka is directly related to the number of
partitions specified for a topic. To read in-parallel from a topic using
multiple consumers, it is necessary to have at least as many parti‐
tions as consumers. It is possible to add additional partitions to a
topic later, but this affects only new data, and it is impossible to
reduce the number of partitions. Adding new consumers to a group
dynamically (either as additional threads or in separate processes or
machines) up to the partition limit enables more data to be read in
parallel.

The major difference between Kafka and the other messaging sys‐
tems is that Kafka requires consumers to track their read positions.
This helps with reliability considerations because, in the case of fail‐
ure, consumers can not only pick up where they left off, but can also
rewind and replay old messages. By tracking the read position of
consumers, and understanding how far those messages have pro‐
gressed through a processing pipeline, it is possible to determine
how far back consumers need to rewind to rebuild state before pro‐
cessing can resume.

Handling different data formats
The messaging systems described previously have different
approaches to understanding the data being transmitted. JMS sup‐
ports several types of messages including raw bytes, a serialized Java
Object, text, and name/value pairs. Both AMQP and Kafka inher‐
ently send data as raw bytes, but AMQP can also specify the
content-type in a way consistent with HTTP, whereas Kafka can uti‐
lize a separate schema registry to define the data structure of mes‐
sages on a topic.

In most practical situations, however, the data is text serialized as
bytes and formatted as delimited data, log file entries, JSON, or
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XML. From a collection perspective, it is important, then, to enable
flexible parsing of text (similar to files) as part of working with mes‐
saging systems.

Cloud and APIs
Increasingly, enterprise applications are being deployed in the cloud
in a SaaS multitenant pattern. Apps like Salesforce’s Sales Cloud,
Workday Payroll, and HCM offer a subscription-based model to
streamline business processes and enable rapid business transforma‐
tions, and promise to incorporate newer intelligence in their appli‐
cations using AI and machine learning. Many enterprises thus are
gradually adopting a hybrid cloud deployment model in which
newer applications are moving to the cloud.

Rarely will all of a corporation’s business applications run on a single
public cloud. Often there’s a compute grid that spans multiple
clouds and on-premises systems, across operations and analytics
environments. To gain real-time visibility, data from these cloud
SaaS applications also needs to be made available in a streaming
manner. In fact, if on-premises systems are set up to receive stream‐
ing changes from on-premises applications, a SaaS checklist must
include requirements to get data transferred in real time from the
SaaS environment.

Some of the techniques we have discussed in previous sections
might not pertain to SaaS environments because of inaccessibility of
underlying platforms/databases due to security considerations (for
example, the opening of certain network ports), service-level agree‐
ment (SLA) requirements (ad hoc CDC initial loads), or multite‐
nancy manageability concerns (special trigger handling for CDC).
Generally, data for business objects is made available in a batch via a
bulk API or in real time via streaming APIs.

Devices and the IoT
The IoT has garnered a lot of attention as a big driver of digital
transformation within many industries. Simply put, IoT is the
worldwide collection of devices, sensors, and actuators that can col‐
lect, transfer, and receive data over a network without requiring
human interaction. The “things” in IoT can refer to the devices
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themselves, or the objects they are monitoring, including people,
animals, vehicles, appliances, and machinery.

Despite the reference to the “internet” in the name, IoT does not
need to transfer data over the web. Internet here is a reference to
Internet Protocol (IP) which enables data packets to be delivered
from a source to destination based only on IP addresses. IoT works
across any IP-based network, facilitating internal as well as external
use cases. The notion that IoT requires devices to deliver data to the
cloud is restrictive given that many commercial, industrial, and
healthcare use cases keep the data private.

Data Collection from IoT Devices
The term IoT device is very broad and encompasses a wide range of
hardware. A single temperature sensor sending data over WiFi can
be considered an IoT device. However, a device that includes a tem‐
perature sensor, alongside other measurements and logic, such as a
smart thermostat, weather station, or fire alarm, could also be an
IoT device. Devices can be further combined to produce larger-scale
“devices,” such as connected cars, smart refrigerators, or home secu‐
rity and control systems.

The size and electrical power available for the device will dictate to
some degree how much computing power the device has and the
types of protocol it can support. Smaller devices tend to have very
little memory or CPU capabilities and require lightweight protocols
for transmitting data. Larger devices can do more processing, utilize
more complex code, and support heavier-weight, more resilient pro‐
tocols. Figure 2-3 shows streaming integration for IoT.

The simplest protocols used by IoT are TCP and UDP at the trans‐
port layer of the TCP/IP network model, sending data directly as
network packets to a destination. At the application layer, existing
protocols can be used, and new protocols have emerged. HTTP and
HTTPS (secure HTTP) are common, often implemented as JSON
being sent over Representational State Transfer (REST) calls.
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Figure 2-3. Streaming integration for IoT

Message Queuing Telemetry Transport (MQTT) and WebSockets
are common publish/subscribe protocols allowing two-way commu‐
nication with devices. OPC-UA (OPC Unified Architecture from the
OPC Foundation) is a next-generation standard that defines a client/
server protocol mainly for industrial applications, utilizing UDP or
MQTT under the hood for data transport.

Aside from the transfer protocol, the other consideration is the data
format. There is no real standard for IoT devices, so integration
needs to be considered on a case-by-case basis. JSON is common,
but data can also be binary, delimited, XML, or appear in a propriet‐
ary textual form.

IoT Scalability Considerations
Any discussion of IoT data almost always includes the concept of
edge processing. Edge processing is when computation is placed as
close as possible to the physical edge device – usually in it – making
the IoT device as “smart” as possible. IoT is fairly unique in the data
world in how much data it generates, in that there can be hundreds,
thousands, or even millions of individual devices all generating
small amounts of data. Even if a single sensor or device generates
data only 10 times per second, when this is multiplied by the num‐
ber of devices, it can quickly become overwhelming.

A lot of this data is repetitive, redundant, or just not that interesting.
It is the information content present in that data that is really
required. (See the previous discussion on Value for the difference
between data and information.)
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A simple example is a temperature sensor. If a single sensor reads
the temperature 10 times per second, it will generate 36,000 data
points per hour. If the temperature stays at 70 degrees throughout
that time, the information content is one item: “70 degrees for an
hour.”

To reduce the amount of data generated by IoT, data from multiple
individual sensors can be collected through a single edge device.
Here, the data can be filtered, aggregated, and transformed to
extract the information content. The important thing here is to not
only do statistical analyses and send summary information, but also
to be able to react instantly to change. Most edge processing is a
combination of statistical summarization plus immediate change
detection and sensor health signals.

Using the temperature sensor example, a combination of statistical
summarization (min, max, average, standard deviation, etc.) within
a specific period, combined with pings every minute to indicate the
sensor is alive, and immediate messages if the temperature changes
dramatically (plus/minus two standard deviations above mean) will
drastically reduce the amount of data that needs to be collected.

The types of processing that can be done at the edge can be quite
complex, even incorporating machine learning and advanced ana‐
lytics for rapid response to important events. This is discussed in
more detail in Chapter 6.
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CHAPTER 3

Streaming Data Pipelines

After data is collected from real-time sources, it is added to a data
stream. A stream contains a sequence of events, made available over
time, with each event containing data from the source, plus meta‐
data identifying source attributes. Streams can be untyped, but more
common, the data content of streams can be described through
internal (as part of metadata) or external data-type definitions.
Streams are unbounded, continually changing, potentially infinite
sets of data, which are very different from the traditional bounded,
static, and limited batches of data, as shown in Figure 3-1. In this
chapter, we discuss streaming data pipelines.

Figure 3-1. Difference between streams and batches

Here are the major purposes of data streams:

• Facilitate asynchronous processing
• Enable parallel processing of data
• Support time-series analysis
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• Move data between components in a data pipeline
• Move data between nodes in a clustered processing platform
• Move data across network boundaries, including datacenter to

datacenter, and datacenter to cloud
• Do this is a reliable and guaranteed fashion that handles failure

and enables recovery

Streams facilitate asynchronous handling of data. Data flow, stream
processing, and data delivery do not need to be tightly coupled to
the ingestion of data: these can work somewhat independently.
However, if the data consumption rate does not match the ingestion
rate, it can lead to a backlog that needs to be dealt with either
through back-pressure, or persistence, which we cover in detail later
in this chapter.

Streams also enable parallel processing of data. When a logical data
stream is present across multiple nodes in a clustered processing
platform, the node on which a particular event will be processed can
be determined through a stream partitioning mechanism. This
mechanism utilizes a key, or other feature of the data to consistently
map events to nodes in a deterministic and repeatable manner.

The data delivered to streams is often multitemporal in nature. This
means that the data might have multiple timestamps that can be
used for time-series analysis. Timestamps might be present in the
original data, or metadata, or can be injected into the stream event at
the time of collection or processing. These timestamps enable event
sequencing, time-based aggregations, and other key features of
stream processing.

Let’s begin our examination of streams through (perhaps) their most
important function: moving data between threads, processes,
servers, and datacenters in a scalable way, with very low latency.

Moving Data
The most important thing to understand about a stream is that it is a
logical entity. This means that a single named stream can comprise
multiple physical components running in different locations; it has a
logical definition, and a physical location. The stream is an abstrac‐
tion over multiple implementations that enable it to move data effi‐
ciently in many different network topologies.
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To understand the various possibilities, let’s use a simple example of
a source reader collecting data in real time and writing it to a
stream. A target writer reads from this stream and delivers the data
in real time to a destination.

Figure 3-2 illustrates the components involved in this simple data
flow, and Table 3-1 provides a description of each.

Figure 3-2. Elements of a simple streaming data flow

Table 3-1. Components of a streaming data flow
Source The origin of real-time data; for example, the database, files, messaging, and so on
Reader Collects real-time data from the source and writes to a stream
Stream The continuous movement of data elements from one component, thread, or node, to

the next one
Network Delineates different network locations; for example, on-premises and cloud
Node A machine on which processes run
Process An operating system process running on a node with potentially many threads
Thread An independent and concurrent programming flow within a process
Component An item running within a thread that can interact with streams
Writer Receives real-time data from a stream and writes to a target
Target The destination for real-time data, for example, database, Hadoop, and so on

In all cases, the reader will write to a named stream, and the writer
will receive data from the same named stream. The simplest way in
which this flow could work is that everything runs within a single
thread, in a single process, on a single node, as depicted in
Figure 3-3.

The stream implementation in this case can be a simple method (or
function) call given that the reader is directly delivering data to the
writer. The data transfer through the stream is synchronous, and no
serialization of data is required because the reader and writer oper‐
ate in the same memory space. However, the direct coupling of com‐
ponents means that the writer must consume events from the reader
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as soon as they are available but cannot write concurrently with
reading. Any slowness on the writing side will slow down reading,
potentially leading to lag.

Figure 3-3. A single-thread named stream

To enable concurrency, a multithreaded model is required, with
reader and writer operating independently and concurrently.

The stream in this case needs to span threads, and is most com‐
monly implemented as a queue. This queue can be in-memory only
or spill to disk to as necessary to handle sizing requirements. The
reader and writer can now run asynchronously and at different
speeds with the stream acting as a buffer, handling occasional writer
slowness to the limit of the queue size. As with the single-threaded
mode, no data serialization is required.

In multithreaded applications, the operating system can cause bot‐
tlenecks between threads. Even in a multicore or multi-CPU system,
there is no guarantee that separate threads will run on different
cores. If reader and writer threads are running on the same core,
performance will be no better, or even worse than a single-threaded
implementation.

Multiprocess models can help with this, using processor affinity to
assign CPU cores to particular processes.

In this case, the reader and writer are running in different operating
system processes, so the stream needs to span the memory space of
both. This can be done in a number of ways, utilizing shared mem‐
ory, using Transmission Control Protocol (TCP) or other socket
connections, or implementing the stream utilizing a third-party
messaging system. To move data between processes, it will need to
be serialized as bytes, which will generate additional overhead.
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The natural extension of this topology is to run the reader and
writer threads on separate nodes, with the stream spanning both
locations, as demonstrated in Figure 3-4.

Figure 3-4. Running reader and writer threads on separate nodes

This ensures full processor utilization but eliminates the possibility
of using shared memory for the stream implementation. Instead, the
stream must use TCP communication, or utilize a third-party mes‐
saging system. As with the previous example, data must be serialized
as bytes to be sent over the wire between nodes. Latency over TCP
between nodes is higher than between processes, which can increase
overall data flow latency. This topology is also useful for the case in
which sources or targets are accessible only from a particular physi‐
cal machine. These nodes could be running in the same network
domain, or spanning networks, in an on-premises-to-cloud topol‐
ogy, for example.

Spanning networks can introduce additional requirements to the
stream implementation. For example, the on-premises network
might not be reachable from the cloud. There might be firewall or
network routing implications. It is common for the on-premises
portion to connect into the cloud, enabling data delivery, but not the
other way around.

Streams also enable parallel processing of data through partitioning.
For cases in which a single reader or writer cannot handle the real-
time data generation rate, it might be necessary to use multiple
instances running in parallel. For example, if we have CDC data
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being generated at a rate of 100,000 operations per second, but a sin‐
gle writer can manage only 50,000 operations per second, splitting
the load across two writers might solve the problem.

We must then carefully think through how the way the data is parti‐
tioned. After all, arbitrary partitioning could lead to timing issues
and data inconsistencies, as two writers running asynchronously can
potentially lead to out-of-order events.

Within a single node and process, we can achieve parallelism by
running multiple writer threads from the same stream, as shown in
Figure 3-5.

Figure 3-5. Achieving parallelism by running multiple writer threads
from the same stream

Each thread will receive a portion of the data based on a partitioning
scheme, and deliver data to the target simultaneously. The maxi‐
mum recommended number of writer threads depends on a number
of criteria, but should generally not be greater than the number of
CPU cores available (minus one core for reading), assuming threads
are appropriately allocated (which usually they are not). The stream
should take care of delivering partitioned data appropriately to each
thread in parallel.

For greater levels of parallelism, it might be necessary to run multi‐
ple writer instances across multiple nodes.
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Again, the stream needs to take care of partitioning data: in this
case, sending it to different nodes based on partitioning rather than
separate threads. It should also be possible to combine the two par‐
allelism mechanisms together to have multiple threads running on
multiple nodes to take best advantage of available CPU cores. The
level of parallelism possible will depend greatly on the nature of the
data, and the requirement for continual consistency.

For example, it might be possible to partition CDC data by table, if
the operations acting on those tables are independent. However, if
changes are made to related tables (e.g., the submission of an order
that makes modifications to multiple tables), the resulting events
might need to be handled in order. This might require partitioning
by customer or location that all related events are processed in the
same partition.

These examples have dealt with the simple case of reading data from
a source and writing to a target. It should be clear that there are
many possible implementation options within even this basic use
case to deal with throughput, scale, and latency. However, many
real-world use cases require some degree of stream processing,
which requires multiple streams and the notion of a pipeline.

The Power of Pipelines
A streaming data pipeline is a data flow in which events transition
through one or more processing steps that progress from being col‐
lected by a “reader,” and delivered by a “writer.” We discuss these
processing steps in more detail later in the book, but for now it is
sufficient to understand these steps at a high level. In general, they
read from a stream and can filter, transform, aggregate, enrich, and
correlate data (often through a SQL-like language) before delivery to
a secondary stream.

Figure 3-6 presents a basic pipeline performing some processing of
data (for example, filtering) in a single step between reader and
writer.

We can expand this to multiple steps, each outputting to an inter‐
mediate stream, as depicted in Figure 3-7.
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Figure 3-6. Basic pipeline performing filtering in a single step

Figure 3-7. Performing processes using multiple steps

The rules and topologies discussed in the previous section also apply
to these pipelines. Each of the streams in Figure 3-7 can have multi‐
ple implementations enabling single-threaded, multithreaded, mul‐
tiprocess, and multinode processing, with or without partitioning
and parallelization. Introduction of additional capabilities such as
persistent streams, windowing, event storage, key/value stores, and
caching add further complications to the physical implementations
of data pipelines.

Stream-processing platforms need to handle deployment of arbitrar‐
ily complex data pipelines atomically (i.e., the whole pipeline is
deployed or nothing is), adopting sensible default stream implemen‐
tations based on partitioning, parallelism, resource usage, and other
metrics while still allowing users to specify certain behaviors to opti‐
mize flows in production environments, as scale dictates.

Persistent Streams
As mentioned earlier, a data stream is an unbounded, continuous
sequence of events in which each event comprises data and metadata
(including timestamp) fields from external or intermediary data
sources. Traditionally, to continuously run processing queries over
streams, stream publishers and consumers used a classic publish/
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subscribe model in which main memory was used to bound a por‐
tion of streaming data. This bound portion – either a single event or
multiple events – was then examined for processing purposes and
subsequently discarded so as to not exhaust main memory. Streams
as such were always transient in nature. As soon as events in a
stream were discarded, they could no longer be accessed.

There are several challenges that naturally arise when streams are
processed in a purely in-memory manner, as just described:

• A subscriber must deal with streams as they are arriving. The
consumption model is thus very tightly coupled to the pub‐
lisher. If a publisher publishes an event, but the subscriber is not
available – for example, due to a failure – the event could not be
made available to the subscriber.
If multiple data streams arrive into the stream-processing sys‐
tem, a subsequent replay of those streams from external systems
cannot guarantee the exact order of previously acknowledged
events if those events are discarded from memory.

• The publisher of the stream can stall if the consumer of the
stream is slow to receive the stream. This has consequences on
processing throughput.

Persistent streams are streams that are first reliably and efficiently
written to disk prior to processing such that the order of the events
is preserved to address the above challenges. This allows for the
external source to first write the incoming stream’s sequence of
events onto disk, and for subscribers to consume those events inde‐
pendently of the publisher. The main thing is that this is transparent
from an implementation standpoint.
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CHAPTER 4

Stream Processing

The goal of stream processing is to get data immediately into the
form that is needed for the target technology. That can involve any
of the types of processing that we mentioned in Chapter 1, which we
elaborate on in this chapter.

Although rare, there are use cases in which streaming integration is
used to move data from a streaming source directly to a target
without any in-stream processing. Here are examples of when this
might occur:

• Replicating a database
• Moving changes from one database to another
• Reading from a message queue and writing the output as-is into

a file
• Moving data from one filesystem to cloud storage without

transforming the data

More commonly, however, the source data won’t match the target
data structure. This may be because some of the source data needs to
be filtered out; for example, some events or fields of an event might
not be needed, so they are removed. Or some data needs to be
obfuscated because it contains personally identifiable information
(PII). Perhaps additional fields need to be added before delivery to
the target. Or, maybe the streaming data needs to be joined with
some reference data for enrichment purposes. Stream processing
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can perform all of these functions, continuously, with low latency,
on any collected data (Figure 4-1).

Figure 4-1. SQL-based stream processing with continuous queries

In-Memory
In a true streaming-integration platform, in-memory data process‐
ing is required. And that processing needs to be performed as effi‐
ciently as possible.

To achieve low latency and high throughput, it is critical to avoid
writing data to disk or utilizing storage I/O prior to processing data.
Stream processing needs to be performed directly on the streaming
data in-memory, before the data ever lands on disk.

There are only two reasons to go to storage:

• The target being written to is a file-based system, such as a spe‐
cific database or cloud storage.

• Persistent data streams are in use.

Stream processing also needs to be parallelized as necessary across
multiple threads – or multiple processes and nodes – to achieve
desired performance. Even in a multistage data pipeline, no disk I/O
or writing data to storage should happen between the intermediate
steps. All the processing should happen in-memory between receiv‐
ing the data and writing the data into targets to achieve the desired
throughput.
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Continuous Queries
A streaming architecture also requires a modern querying para‐
digm. With database systems, queries are run against bounded sets
of existing data. A single set of data is returned, and that’s it. To see
that query over time, you need to run the same query again – and
again. To get updated results, you need to execute queries repeatedly.

With streaming systems, a single query is written based on the
knowledge that data with a certain structure exists. That query sits
in-memory, and waits for the data. As data appears on one or more
incoming data streams, that query processes the incoming data and
outputs results continuously in a never-ending fashion.

Effectively, there are two key differences between the in-memory
continuous queries that happen in stream processing and the way
people thought of queries in the past.

First, continuous queries work on a never-ending, infinite, and
unbounded flow of data, as opposed to a bounded and known set of
data that is resident in a table.

Second, although a database query is “one and done,” continuous in-
memory queries continually produce new results as new data is pre‐
sented on the incoming data streams.

Unlike Extract, Transform, and Load (ETL) systems and integration
technologies of the past, where things were batch-job oriented, real-
time stream-processing systems run continuously, 24/7, and the
engine behind the processing in those systems is the continuous
query. Every time new records appear on a data stream, the query
outputs new results.

It’s important to understand that continuous queries aren’t limited to
simply reading from a data stream. They can read from in-memory
caches, from in-memory reference data that might have been stored,
or via windows (more on windows shortly). They can read from
other – even persistent – storage, event and data sources, as well,
depending on the architecture of the streaming system.

End-to-end latencies can range from microseconds to seconds,
depending on how much processing is required, as opposed to the
hours or even days typical of batch ETL solutions. As emphasized
before, to achieve the goals of continually producing results and
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producing them with very low latency, queries need to be in-
memory.

SQL-Based Processing
There are many ways to process and manipulate data. We can do it
via a scripting language, in an Excel spreadsheet, or even by writing
lower-level code in Java, C++, Python or some other language.

In effect, there are three options in stream processing:

• Low-level code or APIs
• SQL-based processing
• UI-based building blocks that perform transformations at

higher levels of definition

In our opinion, SQL is the best solution – a great compromise
between the other two choices when you consider overall power,
speed, and ease of use. We explain why in this chapter.

Consider the Users
First and foremost, the people who typically extract value from
streaming data are data scientists, data analysts, or business analysts.
They all have experience working with database systems, and almost
all are very familiar with SQL as a data manipulation language.

By choosing SQL as your language for manipulating data, you allow
the people who actually know the data to work with it firsthand,
without intermediaries.

SQL is also very rich. It’s easy to define filtering with WHERE clau‐
ses, to define column transformations, and to do conditional manip‐
ulations using case statements. Different types of objects can be
JOINed as well as GROUP BYed and aggregated. Whereas with data‐
bases, you’re typically joining tables, in streaming cases, you’re join‐
ing streams, windows, and caches to produce results. It’s very easy to
do that in SQL.

Of course, SQL is a higher-level declarative language. So, to achieve
optimal performance, SQL must be transformed into high-
performance code that executes on whatever stream processing plat‐
form has been chosen. If using Java, SQL is translated to
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high-performance Java byte code. This way, you get the best of both
worlds: the declarative nature of SQL – which allows data professio‐
nals to work directly with the data – and the high performance as if
a developer had written the code.

Most streaming technologies are moving toward SQL for these rea‐
sons: Striim, Spark Streaming, Kafka, and Samsa, among others,
offer SQL interfaces.

User Interface–Based Processing
Instead of providing a declarative language like SQL, some stream‐
ing vendors go to a higher level and do everything through a user
interface (UI). This UI is typically a graphical user interface (GUI)
and provides transformer components that are capable of doing
some of the operations that SQL can do. Providing such an interface
democratizes the use of data even more given that virtually any user
can be proficient with a GUI.

Still, ultimately, what results is quite a lengthy data pipeline. That’s
because each of the GUI-based steps is performed as an individual
task because each one of the transformers possesses very granular
functionality. Whereas SQL could achieve its objective with a single
statement – perhaps some filtering with a WHERE clause and some
joins or column transformations – five or six different transformer
boxes would need to be joined together using the GUI.

The upside of a GUI is that people who have no experience whatso‐
ever in any programming language (including SQL) can build trans‐
formations. But there are downsides, as well. First, it might not be a
good thing that people who possess no experience building out
transformations are handling critical data. Second, the data pipe‐
lines themselves can suffer in terms of performance because, rather
than a single processing step using an SQL statement, now quite a
few processing steps are required. Performance can take a hit.
Although having a GUI for the pipeline is essential, having multiple
individual UI-based transformation steps is less efficient than a sin‐
gle SQL statement.
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Multitemporality
As you recall, events are created whenever anything happens. If data
is collected, an event is generated. If you’re doing CDC from a data‐
base, or reading from files line by line, or receiving data from IoT
devices or messaging systems, it is classified as an event. And each
event has a timestamp for when it enters the system.

But it’s also possible that there are additional time elements for such
events. For example, with a database system, there is the time at
which the event was committed into the database. Then there might
be a timestamp for the time that the streaming system received it.
Those two timestamps might be different, especially in a recovery
scenario in which there is a discrepancy between when the database
system wrote it and when it was read. Typically, there will be at least
those two timestamps. They are considered metadata; that is, data
about the data you’ve received.

These events will be at least bitemporal. But there could be addi‐
tional timing elements within the data itself that are worth taking
advantage of.

In an event system, you should be able to make use of any of those
times for time-series analysis. You might do this to make sure the
data is coming in the proper order, to use windowing functions and
data aggregation in a time-based way, or to do time-series analyses
using regression functions. The result is multitemporality, which
means that any event can be defined to exist in time based on multi‐
ple pieces of time information.

This is important, because any operation that you perform on the
data that relies on time should be able to make use of any of the tim‐
ing attributes of an individual event. Simply utilizing the time at
which it was collected might not be that useful. Being able to choose
which of the timing elements can be better suited to your particular
use case.

From an analytics perspective, however, timing information is cru‐
cial for building aggregates over time periods. We explain this later
on when we explore windows and the different types of aggregations
and functions that we can apply to data as part of time-series
analyses.
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Transformations
Transformations are about applying functions to incoming data.
Transformations typically work on a record-by-record basis. The
key is being able to manipulate the data, get it into the desired form,
join it together, and perform functions on it to produce some
desired output.

For example, you might want to concatenate two strings together so
that you can combine first name and last name into a full name.
That’s a very simple example. Or, you might need to look up some‐
thing based on an incoming value by saying, “Output the zip code
that corresponds to this incoming IP address” by doing a LOOKUP
function.

More complex functions are possible, of course, such as conditional
transformations that involve case statements in SQL, in which if a
particular field has a certain value, you want to combine it with a
different field.

Filtering
Data flows in stream processing can be arbitrarily complex. For
example, they could have splits or branches in them. Filtering is
used when the output stream doesn’t need all the data coming in.

Filtering for Data Reduction
Data reduction is one reason to do filtering. A simple example
would be to avoid processing any debug log entries because you’re
interested only in warning or error messages. Another would be fil‐
tering incoming CDC records so that they don’t include inputs from
a particular database user. In the first case, a data element is being
filtered. In the second case, the filter is based on metadata that
includes which user made a given change because you don’t want
those particular changes downstream (Figure 4-2).
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Figure 4-2. In-stream filtering is used when output streams do not
require all incoming data

Filtering for Writing
Another reason to use filtering is to ensure that only certain data is
written to certain targets. You might have an incoming data stream
with a huge volume of data in it – a big database schema undergoing
CDC, so that the incoming data stream includes changes from all
the tables in that schema. But suppose that you want to store only
information about product orders in a cloud data warehouse. You
don’t want changes to customer records or changes to products to be
written to this particular reporting instance, just orders. Filtering
enables this.

In SQL, most of the time, filtering is done by using the WHERE
clause. In the cases of filtering based on aggregates, the HAVING
clause is useful.

Analytics
We also can apply filtering for decision-making using analytics. You
can use analytics to determine, for example, whether an event met
or exceeded a specified threshold, or whether or not to generate an
alert. We look deeper into analytics later on.
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Windows
Windows are used to convert an infinite, unbounded incoming data
stream into a finite bounded set of data, using whatever criteria is
preferred (see Figure 4-3). Set-based operations can then be per‐
formed on that data. The two major uses of windows are correlation
and aggregation. More on those later. There are several types of win‐
dows. Sliding windows change any time new data comes in, or as
time passes. Every time a new record enters the window, or some
time goes by, records can leave the window. Any queries that run on
that sliding window are triggered every time the window changes.

Figure 4-3. Windows are essential for correlation and aggregation use
cases

Next, we have jumping windows or batch windows. These have crite‐
ria that determine how much data needs to be in the window before
that data is output and before the queries reading from that window
downstream are triggered with a windowful of data. The window is
then emptied and ready to be filled again.

If you run a moving average over sliding windows, you see a smooth
moving average rather than a jumping/batch window producing a
moving average that happened only at a one-minute interval.
Hybrid versions of that can be made, as well, where you say, “I don’t
want to execute the query every time I get new data, I want to do it
every 10 events.”

Then, there are session windows, which use timestamps. We could
define such windows by, for example, “hold data until no new data
corresponds to this for 30 seconds.” This is useful when a customer
comes to a website and is active for a period of time before leaving.
Grouping all of their activities by waiting until they don’t do any‐
thing else for a specified amount of time can trigger a query.

Windows | 49



As such, there’s an entire spectrum of sliding, to fully batch, and
then session windows. And with any of the windows, we can also
add timeouts that trigger the output independent of anything else
happening. For example, “hold 100 events or output as much as
happened in the last 30 seconds.” You can do combinations of those
windows, as well.

Windows are essential for correlation and aggregation use cases. The
different types of windows are suited for different purposes. Yet win‐
dows might not be intuitive for database engineers. That’s because
databases are inherently set based. Data exists in a table, and that’s it.
Conceptualizing data as something that’s continually changing, and
having to create sets around it to do basic aggregate functions like
sums, averages, or linear regressions, might be a new and different
way of thinking.

Almost all streaming integration platforms offer some degree of
windowing, and all are able to do timing-based window functions.
However, not all support all the different types of windows or multi‐
temporality. This is important to know because windows are an
essential component to any kind of any stream-processing platform.
Without windows, streaming integration use cases can be limited.

Enrichment
Streaming data might not contain all of the information that you
need at your target destination or to do analytics. That’s when
enrichment comes in.

For example, when doing CDC from a relational database, the
majority of the fields in any one particular table will be IDs that refer
to other tables. A data stream of all product items that have been
ordered that is coming from the customer-order item table, for
example, might contain an order ID, a customer ID, an item ID,
maybe a quantity and timestamp, but that might be it.

Attempting to do downstream analytics on this limited data would
probably not be productive. It would be impossible to write queries
like, “show all of the real-time orders from California,” or, “show all
of the orders for umbrellas because a heavy storm is expected.”
Without additional information or additional content, you’re not
going to be able to perform rich analytics.

The answer is to enrich the existing data with reference data.
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For example, products in an online store – let’s say 100,000 of them
– could be loaded into memory and indexed by ID. Then, whenever
a customer order item appears in the data stream, it could be joined
with the items in memory and additional information added: the
item name, its category, its current inventory, and other relevant
data. The data stream now has much more information in it, and is
much more suited for analytics.

Distributed Caches
The challenge of enriching real-time data is the size and speed of the
data. In a database, everything is in a data store. It’s accessible within
the same database. Two tables can easily be joined together to pro‐
vide all the information needed. However, for real-time streaming
environments, when we’re talking about hundreds of thousands of
events per second, this is difficult.

If you’re joining against a remote database, for example, it would be
necessary to do a query every event. Each query could take several
milliseconds. With hundreds of thousands of events, it becomes
impossible to query back to a database for every entry in a data
stream in the required time. Similarly, with external caches or exter‐
nal data grids, it’s not feasible to do a remote request from that cache
and maintain that speed of 100,000 events per second.

We can deal with this by including a distributed cache, or in-
memory data grid, within the streaming integration platform itself.
By placing the data in memory into the same process space as the
streaming data and partitioning that data in the same way as the
incoming data events, it’s possible to achieve very high throughput
and low latency.

That doesn’t always happen naturally. For example, with 100,000
items in memory, a six-node cluster, and a caching system defined
to always maintain two copies of the data for redundancy purposes,
the chances of any one particular item of data being on a single node
is one in three.

However, if we can arrange it so that the events are partitioned by
the same algorithm as is used for partitioning the reference data, the
event will always land on the correct node. Now the query is com‐
pletely in-memory in that node, and is really, really fast. Otherwise,
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it’s necessary to do a remote lookup, which could take tens to hun‐
dreds of microseconds.

Correlation
Correlation in this context does not refer to statistical correlation.
It’s not about matching variables or using linear regression to under‐
stand how variables are correlated. That’s part of analytics (Chap‐
ter 5). Here, by correlation, we mean matching events coming in a
data stream with events that are coming from one or more other
data streams.

A simple example is to have data that represents activity on a num‐
ber of different hosts, with that data coming from different sources.
Perhaps it includes machine information, CPU usage, and memory
coming from system logs. Maybe it includes network traffic infor‐
mation coming from network routers, or firewall information com‐
ing from other sources. How do you join it all together to see
everything that’s happening with a particular device?

In this case, they’d have an IP address or MAC ID in common.
What’s required then is to join the data streams together to produce
a single output data stream.

However, doing this with data streams is difficult because they are so
fast moving. Having events coinciding at exactly the same time is
unusual. It’s like aiming two proton beams at each other in a particle
accelerator. The chances of two protons hitting are small because
they’re fast and they’re tiny. The same is true for streaming events.

To join data streams together, you typically need to incorporate data
windows. Imagine you have multiple physical pipelines and each has
a temperature, rate of flow, and pressure. There are sensors on each
pipeline measuring these attributes sending data to data streams,
and each sensor is generating data at a different rate.

To understand the temperature, pressure, and flow of a particular
pipe, it would be necessary to join those three data streams together.
Now, because they all come at different speeds, the way to do that
would be to create windows that have the last record per pipeline,
per data stream. And whenever a new entry comes into the window,
it would replace the old one for that pipeline.
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The query is then written against the three windows. The query out‐
puts an event whenever any of the windows change, and the output
will be whatever the new value is for that pipeline on the window
that changed, plus the existing measurements from the other
windows.

This way, it’s possible to join streams together that run at different
speeds and produce an output whenever data is received on any one
of the streams.

It’s possible to go further than that by deciding to hold the last few
values rather than only the last value. This allows a calculation to be
made of what a value could be. Perhaps instead of simply using the
last value, the average of the last 3 values is used, or a more complex
regression mechanism could calculate the value based on the last 10
values.

In summary, windows aren’t just useful for joining together streams
that are coming at the same rate. It’s also useful for joining streams
that flow at different rates. Windows are the essential ingredient to
being able to do real-time correlation across fast-moving data
streams.
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CHAPTER 5

Streaming Analytics

Analytics is an end goal of many streaming integration use cases.
You can perform in a cloud data warehouse or by using machine
learning on a large-scale data store. You can do it using an on-
premises Hadoop infrastructure, or in a cloud storage environment.
You could utilize a document store or another store like Azure Cos‐
mos DB or Google Cloud Spanner. It could even be done writing
into a database.

The most important point is that people want their data to be always
up to date. So, when you’re analyzing data, you should always pos‐
sess the most recent data. And a primary driver of streaming analyt‐
ics is that people want to do analytics on much more current data
than was previously possible.

With ETL systems, people were satisfied with data that was a few
hours or even a day old because they were running end-of-day
reports, and that was the data that they wanted to see. With stream‐
ing systems, they want insight into the most current data. This is
true whether the data is being analyzed in memory or is landing
somewhere else.

However, getting real-time insights from data is typically not possi‐
ble if the data needs to land somewhere (Figure 5-1). It’s not possible
to get within a few seconds – much less a subsecond from changes
happening in the source system to being delivered into a target sys‐
tem that way. And it’s still going to be necessary to trigger the ana‐
lytics in that target platform somehow. Perhaps you’re pulling it, or
maybe you’re running analytics reports, but you still must trigger it.
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Figure 5-1. Streaming integration enables real-time analytics for cloud,
applications, and historical data

In streaming analytics, the incoming data itself in the data stream is
what triggers the analytics because it’s continuously happening. If
the goal is to have immediate notifications of anomalies, immediate
insight into what’s happening within data, or immediate alerts for
unusual behavior, then streaming analytics is essential.

In this chapter, we discuss the most important aspects of streaming
analytics, and how to get the most out of your data on your stream‐
ing platform.

Aggregation
Aggregation is any process in which information is gathered and
expressed in a summary form. Because a data stream by definition is
unbounded and infinite, doing aggregations over data streams is
challenging. Suppose that you want to know the count and sum of a
particular value in an accounts data stream. Both of those numbers
are going to keep on increasing infinitely because data in the stream
will just keep on coming. It is generally more useful to aggregate
functions over a bounded set of that data.

Going back to the example of the order item stream, you might want
to determine the top 10 selling items in an ecommerce store. In a
database, that query is easy. You select the sum of the quantity,
group by item ID, order by the sum of the quantity limit 10, and you
have your top 10 selling items.

To change that query to know what sold most in the past five
minutes, it would be necessary to put some limiters over time‐
stamps. That query would need to be rerun whenever you wanted to
see that value. In a streaming system, you can do time-constrained
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queries much more easily by utilizing windows, as discussed in
Chapter 4.)

To get an answer using this particular example, it would be neces‐
sary to create a window that holds five minutes’ worth of data from
the order item stream, and group by the item ID. Whenever any‐
thing changed, whenever any new data came into that window, that
aggregate query would be rerun and it would show the sums all of
the quantity sold per item in the last five minutes.

The advantage is that it’s no longer necessary to keep running that
query and changing the date premises. Everything is automated.
That’s why streaming analytics systems are much better suited to any
analysis that is based on time. Streaming analytics is the optimal sol‐
ution for time-series analysis.

Being able to group streaming data by some factor, aggregate over it,
have it continually change, and have an output every time it
changes, is key to aggregation. And it is also key to the summariza‐
tion and analytics capabilities of streaming analytics. There are
many different ways that we can do this, depending on the use case.
It’s even possible to have intermediate storage where the results of an
aggregation can be stored in another window, and then you query
that window.

On a practical level, with aggregation, it often makes sense to work
backward and reverse engineer what actions to take based on the
desired outcome. For example, if you want a dashboard visualization
that shows in real time the top 10 items being sold based on changes
in the underlying database table, you’d typically use that end result
to determine which queries need to be written.

Going further with that example, now that you have visibility into
top-selling items every five minutes, it might make sense to store
those aggregates in another window. By storing the last hour’s worth
on a five-minute basis, it’s possible to do additional queries over
that. For example, you might want to be alerted if an item increases
or decreases in sales by an anomalous amount within any five-
minute period.
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Pattern Matching
Pattern matching used to fall into a separate market niche called
complex event processing. The purpose of complex event processing
was to look at numerous small-grained business events and under‐
stand what was happening based on a pattern in those events (see
Figure 5-2). With pattern matching, you’re looking for data in a
sequence of events from one or more data sources that corresponds
to some particular pattern.

Figure 5-2. Understanding business events using pattern matching

For example, sensor information from an Internet of Things (IoT)
device could include the temperature, pressure, flow rate, and vibra‐
tion. If the temperature rose 10 degrees in that device, that might be
within safety parameters. If the flow rate slowed, or the pressure
increased, by a certain amount, that might also be within guidelines.
However, it might be an indicator of trouble if the temperature rose
by 10 degrees, the pressure went up by 10% and the flow decreased
by 5% – all within a 10-second period.

By being able to look across those different sources and defining
that pattern, an alert could be triggered.

Now the system isn’t simply looking at one event or even the aggre‐
gation of events. It’s looking at a sequence of events that meet exact
criteria. We can define these happenings ahead of time, and then the
data streams can be fed through the pattern matching. They will
then output a result whenever the pattern matches.

Complex event processing is an essential part of streaming analytics
and any streaming data platform must be able to do it to be consid‐
ered a complete solution.
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Statistical Analysis
Statistical analysis is when you apply statistical methods to real-time
data. This is easy to do within a database table. For example, to cal‐
culate an average value, you simply select average column value.

However, generating a moving average by time over a database table
is very difficult. Database tables aren’t designed to do that. The
query would need to be quite complex.

In a streaming system, doing statistical analysis on streaming data
means utilizing the aggregate querying capability, but for statistical
functions. We’ve already discussed aggregation; about being able to
do a summary of values that were in a five-minute window. By
replacing that sum with an average, now you have a five-minute
average.

If, alternatively, you use a sliding window for which every time a
new value comes to the window the output changes, the average
now becomes a true real-time moving average. Similarly, you can do
other statistical analyses.

Of course, certain things are impossible in real-time mode. The
mean can be calculated, for example, but not the mode or the
median. Those types of analyses don’t work in a real-time data sys‐
tem. However, performing standard deviations or linear regressions
certainly do work.

Imagine, in addition to doing a five-minute moving average, you’re
also doing a five-minute moving standard deviation. It’s possible to
check for a value that exceeds two times the standard deviation
above the average or below the average, then an alert will be trig‐
gered because it’s an anomalous value.

Thus, based on simple statistical analysis, it’s possible to do interest‐
ing anomaly detections.

Integration with Machine Learning
Machine learning is a process by which computer systems can learn
and improve from experience without being explicitly programmed.
By inferring from patterns in data and generating algorithms and
statistical models, computer systems can perform tasks without
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being given explicit instructions. In short, they learn from the data
that they are given.

What we’ve defined up until now are analyses that need to be specif‐
ically written. For example, you must specifically say, “this is the
aggregation I want to perform,” or “this is how I want to calculate
these statistics and how I want to compare them.” Or you must
specifically say, “this is the exact pattern that I’m looking for, that if
this pattern occurs, I want to trigger an alert.”

A machine learning algorithm is different. The main thing about
machine learning is that you don’t necessarily know what you’re
looking for. The rules about what is “normal” are not known. It
hasn’t yet been determined what anomalous behavior means with
regard to a particular data set. By integrating a trained machine
learning model into a streaming analytics data flow, you would feed
the current values to the model and then wait for results.

Alternatively, a model might be trained to understand the normal
relationship between a set of variables in a data event. Then, by feed‐
ing it a set of variables, it can output what is normal versus what is
unusual.

There’s obviously a lot more that can be done using machine learn‐
ing. Instead of simply having the two categories of normal and
unusual, there could be different clusters that represent different
types of behavior.

For example, if attempting to analyze a network, a machine learning
algorithm could be trained to pick up on a number of different
behaviors: normal user behavior, normal machine behavior, virus
behavior, an external breach, or an external hack type of behavior.
By classifying these behaviors, the machine learning model could
trigger an alert for any events that fit into those categories.

The difference between streaming integration with machine learn‐
ing versus other approaches is that machine learning is best suited
for when you don’t know what to look for in the data. You simply
don’t know how to write the rules.

The biggest challenge with integrating machine learning into a
streaming environment – also known as operationalizing machine
learning – is the way machine learning has traditionally worked.
Historically, data professionals such as data analysts or data scien‐
tists were given a large volume of raw data. They would then spend,
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on average, 80% of their time preparing that data: cleansing it,
manipulating its structure, enriching it, and labeling it.

In other words, they would perform a lot of data manipulation
ahead of time on the raw data to get it into the appropriate form for
training. They would then train the model using a sample of that
data. Only after all that time and effort would they have a well-
trained model that represented the sample data.

Ideally, they should be able to give that model back to IT so that it
can be run against the real-time data that’s coming in.

But there’s a problem. The model was trained on the prepared data
that had various features extracted and was cleansed, enriched, and
filtered. A lot of different tasks were performed to process that data
before the model was trained. As such, the raw data that IT has
might look nothing like the processed data used to train the model.
There’s a mismatch. A machine-learning model has been created,
but it doesn’t match the raw streaming data that is to be used to
make predictions or spot anomalies.

The solution is to move as much of that data preparation as possible
into the streaming system. The streaming system should be used for
data cleansing, preparation, feature extraction, enrichment – for all
of the tasks that the data scientist was previously doing after they
received the data. This would now all be performed in the streaming
system beforehand. That prepared data then can be utilized to train
the machine learning model. The benefit is minimizing latency. The
historical way to train the machine learning model is based on data
that is out of date because it takes the data scientists so much time to
prepare it and apply it to the model. In a streaming architecture, the
data is prepared in milliseconds so that it is still current data.

If desired, there can be a simultaneous process during which the
streaming system is still writing the training files, but it’s also pass‐
ing the real-time streaming data into the machine learning algo‐
rithm so that it can return real-time results. And those real-time
results could be classified into different categories of data. It could
be making predictions into the future or looking at the difference
between a predicted value and an actual value. But it’s doing this
based on machine learning training, not on any hardcoded values.
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Anomaly Detection and Prediction
Anomaly detection and prediction are the end goals of streaming
analytics. If unusual behavior is identified – perhaps unusual net‐
work behavior, unusual sales of a particular item, or the temperature
of a device increasing while pressure also rises – that behavior could
indicate a potential problem that might require an alert. This is one
of the top benefits of streaming analytics: alerts on critical issues
based on complex calculations that can be done in real time. With
such real-time alerting, it’s possible to know immediately whether
you have a network breach, you’ve mispriced your flat-screen televi‐
sions, or that there’s a problem in a manufacturing pipeline.

Unlike other analytic systems in which queries are made after the
fact to understand what has happened, streaming analytics systems
can automatically send immediate notifications, without human
intervention.

Alerting based on anomalies, pattern matching, and statistical analy‐
ses are all key aspects of streaming integration. We can extend these
functions to make predictions. In addition to generating alerts
immediately, you can also utilize visualizations or dashboards to see
predicted outcomes based on what’s going on right now. This can
help with quality assurance, customer experience, or other business
concerns.

It can also help with predictive maintenance. For example, based on
real-time information, we can identify that a particular motor is
likely to wear out within the next two weeks, as opposed to its
expected full-year lifespan, because data from it has been matched
against machine learning analyses that have been done on failing
motors in the past.

You can use predictive analytics to identify the current state of a sen‐
sor in a factory, a pipeline, or a fleet of cars, and utilize that informa‐
tion to make decisions.

Being able to not only identify anomalies, but also make predictions
based on all the streaming data that you have and present that effec‐
tively to users – which we talk about in Chapter 6 – is the primary
goal of streaming analytics.
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CHAPTER 6

Data Delivery and Visualization

Chapter 2 discusses collecting real-time data, and the different tech‐
niques that you can use to obtain streaming data from different
sources. This chapter looks at the opposite of that: now that you
have your streaming data, where do you put it?

Generally, when starting to work with streaming data, businesses
have a specific problem – or problems – to solve. This means the
target, or where the data will be placed, is top of mind from the
beginning. Which target you choose and the way that target will
solve the specific problems you face will be very different depending
on the particular use case.

Certain technologies are better suited for real-time applications.
They’re superior at gaining insights from data as it flows in. Others
are better suited for long-term storage and then, downstream, to
perform large-scale analytics. Still others, instead of delivering data
into some ultimate location, make it possible to get immediate
insights by performing processing or analytics within the streaming
integration platform.

In this chapter, we talk about streaming data targets: databases, files,
Hadoop or other big data technologies, and messaging systems,
among others. We also investigate the prevalence of cloud services
and how moving to the cloud can alter the way you use target tech‐
nologies. This latter point is very important given that the majority
of businesses have already begun their transition to the cloud.
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Here are some of the questions we answer about working with
streaming data targets:

• How do you determine the end goal of your streaming integra‐
tion?

• Where should you put streaming data?
• What should you do with it?

The first step when choosing a target technology is to understand
your use case. For example, a common goal in a streaming initiative
is to migrate (or replicate) an on-premises database to (into) a cloud
database. This can be because an application is being moved from
on-premises infrastructure to the cloud. Or perhaps some reporting
on an on-premises application is being done in the cloud.

In most of these cases, a database is the optimal target – a database
that’s similar to the original database and kept synchronized from an
on-premises source to a database target. However, if the goal is to do
long-term analytics, or perhaps even machine learning, on data that
was gathered in a continuous fashion using streaming technologies,
a database might not be the most appropriate target.

Another option would be to move the data into storage. This could
be done using a Hadoop technology like Hadoop Distributed File
System (HDFS), or you could put it into a cloud storage environ‐
ment like Amazon Simple Storage Service (Amazon S3), Microsoft
Azure Data Lake Store, or Google Cloud Storage. Your target could
be a cloud data warehouse or even an on-premises data warehouse.
Again, it depends on what you want to get out of the streaming data
– what your particular use case, or goal, is.

This is why, when looking at streaming integration platforms, an
important consideration is their ability to write data continuously
into your technology of choice and to be able to single source the
data once from wherever you’re pulling it from, whether a database,
messaging system, or IoT device.

After you articulate your goal, it’s time to consider the target. We
can repurpose data in multiple ways. Some of it can be written to an
on-premises messaging system like Kafka. Some can go into cloud
storage. And some can go into a cloud data warehouse. The impor‐
tant point is that a streaming integration platform should be able to
work with all of the different types of target technologies. Data that’s
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been collected once can also be written with different processing
technologies to multiple different targets.

The techniques to work with these different targets are as varied as
they are for data collection (see Chapter 2). Which one to choose
also depends on the mode and the nature of the source data as well
as its mission criticality, which we discuss more fully in Chapter 7.
But it’s important to keep mission criticality in mind from the
beginning because you must determine ahead of time, based on
your use case, how important the streaming data in question is. Can
you afford to lose any of it? What would happen if you had duplicate
data? Based on that you can determine the level of reliability that is
needed and choose your target given that some targets are better
suited to highly reliable scenarios than others.

In this chapter we discuss each of the different potential targets and
their respective pros and cons.

Databases and Data Warehouses
When you write into databases from a streaming integration system,
you need to consider a number of issues:

• How do I want to write the data?
• How do I deal with different tables?
• How do I map the data from a source schema to a target

schema?
• How do I manage data-type differences from, for example, an

Oracle database to a Teradata database?
• How do I optimize performance?
• How do I deal with changes?
• How do I deal with transactionality?

These questions persist across all the variants of databases and data
storage that you might need to integrate with as a target, both on-
premises and in the cloud. It’s also important to include document
stores, MongoDB, and newer scalable databases like Google Spanner
and Azure Cosmos DB that are available only in the cloud.

Whenever writing into any of these databases, for example, the first
step is to identify how to translate the data. This means taking the
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event streams from the streaming integration platform and trans‐
forming them into what you want them to appear like in the data‐
base. This typically requires a lot of configuration. Whatever
streaming integration platform you choose must be capable of ena‐
bling you to do this.

To configure your data streams correctly, you must consider your
use case. For example, Java Database Connectivity (JDBC) is the
most common way to connect when a database is the target on a
Java-based streaming processing platform. But even with that rela‐
tively simple technology, you need to make configuration choices
based upon the specific use case.

If you’re collecting real-time IoT data, and the goal is to insert all of
the data into a table in a target database, you could write it as inserts
into that table. That’s a very simple use case.

However, recall from Chapter 2 that one of the major techniques for
collecting data from databases is CDC, or being able to collect data‐
base operations, inserts, updates, and deletes as changes. When
doing that, it might be necessary for certain use cases to maintain a
change – to keep track of whether it was an insert as opposed to an
update or a delete – and to keep that information about the data
available so you can take appropriate action in the target database.

Take migrating an on-premises database into the cloud. Not only is
a snapshot in time of all of the data in that database required, it’s
important to recognize that unless you can stop the application
related to that database from operating, changes are going to con‐
tinue to be made to that database. You cannot stop most mission-
critical applications. They’re too important to the business.

To move an important application to the cloud, then, requires also
moving dynamically changing data in the database to the cloud.
This is referred to as either an online migration or phased migration
to the cloud. Simply making a copy of whatever is in the database at
a given moment doesn’t work.

Here’s why. An initial copy of the data can be captured at a particular
point in time, but then any changes that happen to that data from
that point until you are ready to start using that new database must
be added to the target. Only then can it be tested to ensure that the
application is working and subsequently rolled into production.
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In this use case, you would effectively utilize a combination of
batch-oriented load of data from tables into a target database, but
then overlay that with changes that have been – and which continue
to be – made to that data. This provides you with the ability to not
just copy an on-premises database, but to synchronize that database
to a new cloud instance.

The point is, it’s reasonably trivial to write all data in a streaming
architecture to a target database as inserts. It’s more complex to
honor the changes (e.g., to apply inserts into a target as inserts,
updates as updates, and deletes as deletes). It becomes even more
complicated to honor transactionality, and transaction boundaries
that might have been present on the source.

For example, if five changes happened within a single transaction on
a streaming source, it might be necessary to ensure that those five
changes – perhaps a couple of inserts, an update, and a delete –
make it all the way to the target database and that they are done
within the scope of a single transaction. That’s because they need to
either all be there or not.

Therefore, for databases, you need to be able to handle very high
throughput, respect change, and honor transaction boundaries.
When batching operations together, and considering parallelizing
operations for performance reasons, you need to do this while keep‐
ing transactional integrity and potential relationships within the
database tables in mind.

Data warehouses have their own challenges. The biggest difference
between writing streaming data into databases and writing it into
data warehouses is that the latter typically are not built to receive
streaming data one event at a time. They are more likely designed to
be bulk loaded with large amounts of data in one go, and that
doesn’t always align with the event-by-event nature of streaming
integration. Thus, when considering on-premises data warehouses,
all of them work better when you can load them in bulk.

The same is true of cloud data warehouses. Amazon Redshift, Goo‐
gle BigQuery, Azure SQL Data Warehouse, and Snowflake all oper‐
ate better from a loading perspective if you do it in bulk. But even
with data warehouses, loading bulk inserts isn’t always the answer.
Most of these data warehouses support modifications through dif‐
ferent mechanisms that can be quite convoluted, especially when
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you aren’t loading all the data, but trying to apply changes that
might have occurred.

When using streaming integration, it is possible to keep a cloud data
warehouse like Snowflake synchronized with an on-premises rela‐
tional database like Oracle by utilizing the proper technology inte‐
gration points. You must keep in mind, however, that real-time
latencies aren’t usually possible when writing into a data warehouse.
Data warehouses are typically not designed to receive data in a real-
time fashion, and they certainly are not designed to also create the
kind of data structures typically found in a database in real time
from source data. Typically, there is a batch-processing step that
needs to happen, which means that the best kind of latencies possi‐
ble with data warehouses, even with streaming integration technolo‐
gies, are in the order of minutes, not seconds or subseconds.

Files
Files are really nothing more than chunks of data that have been
named. It’s very common to write streaming data into file targets,
on-premises and in the cloud. In this section, we talk about both.
We’re also going to discuss files separately from technologies like
HDFS, which is part of the Hadoop ecosystem, for reasons that will
be clear in the next section.

When writing to files, it’s important to consider what data is going
into them. Is all of the data being stored in one big file? Is it a “roll‐
ing” file so that as soon as it reaches a certain size or triggers some
other criteria, it rolls over to a new file? That scenario would, of
course, require you to implement a numbering or naming system to
distinguish the files from one another.

Perhaps the goal is to write to multiple files in parallel based on
some criteria in the data. For example, if you’re reading change data
from databases, you might want to split it based on metadata such as
timestamps or source location and write it into one file per table.

Because of this, the ability of your streaming platform to take
streaming data and choose which of potentially multiple buckets it
goes into is an essential consideration. Here are some of the ques‐
tions that arise:
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• How do you split the data?
• How do you write the files?
• How do you name the files?
• Where do they reside (on-premises or in the cloud)?
• Are they managed by a storage system, or are they directory

entries?
• What is the format of the data?

These are all important considerations, but the last, the format of
the data, is the most critical. When writing data to files, what does it
look like? Does it look like raw data? Perhaps it is delimited in some
way. Maybe it needs to be in JSON, which is structured human-
readable text. Or perhaps one of the industry-standard binary
formats.

Then there’s the decision of which technology to use to work with
the filesystem. Is it Hadoop? Is it cloud storage? All of those consid‐
erations are very much based upon the use case and the end goal.
For example, are the files going to be used to store things for long-
term retrieval? Are they going to be utilized for doing machine
learning somewhere down the line? The important point is that the
streaming data platform you choose is flexible enough to accommo‐
date what you want to achieve, across a wide variety of use cases.

Storage Technologies
The technology used to store data as files has changed dramatically
in the past few years. It has transitioned from simple directory struc‐
tures on network filesystems, through distributed scalable storage
designed for parallel processing of data in the on-premises Hadoop
big data world, to almost infinite, elastically scalable and globally
distributed storage using cloud storage mechanisms.

Within the Hadoop world, the HDFS is the basic technology. How‐
ever, you might also want to write into HBase as a key/value store, or
write data using Hive – a SQL-based HDFS interface – into a filesys‐
tem. You might even be using a filesystem as an intermediary for
some other integration that ends up being transparent to the user.

For example, if writing data into the Snowflake database, it might be
desirable to land intermediary files on Amazon S3 or Azure Data
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Lake Store, which can then be picked up immediately by Snowflake
and loaded as external tables. That storage system can act as a
staging area for loading into HDFS, in which case all the questions
we discussed about how often to write and the format of the data
still must be answered. This might or might not be abstracted from
the user perspective, depending on which streaming integration sys‐
tem is being used.

Typically, with Hadoop-based systems, external tables for HDFS
play a large role in where the data is targeted. Kudu, a newer, real-
time data warehouse infrastructure built on top of Hadoop does
this. Although working with raw data can be important, it might be
necessary to abstract it so that you can write directly into a Hadoop-
based technology and make it easier to process or analyze.

There are many blurred lines between these various storage technol‐
ogies, and trade-offs are often required. When uploading to the
cloud, the interfaces don’t always provide ways of writing real-time
streams but require file uploads, so determining an optimal micro‐
batch strategy that optimizes speed, latency and cost is important.

Messaging Systems
Messaging targets are very important as targets because they con‐
tinue the good work of stream processing that have already been
started by the streaming integration platform.

Just as it is important to be able to read from messaging systems (as
is discussed in Chapter 2), it’s important to be able to write into
them. Your reasons for using messaging systems as targets will vary
considerably by use case. It might be that processed or analyzed data
is being delivered for other downstream purposes, or that the mes‐
saging system is being utilized as a bridge between different envi‐
ronments or different locations.

Messaging systems can be useful as a way to enable others to work
with the same data or as an entry point into a cloud environment.
And because they are inherently streaming themselves, messaging
systems can often be the jumping-off point to something else while
maintaining a streaming architecture. For example, a use case might
require taking real-time database information or real-time legacy
data and pushing that out into a cloud messaging system like Azure
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Event Hubs. Then, that real-time change data becomes the backbone
for future processing or analytics.

When working with messaging systems, it’s important to under‐
stand the major differences in both the APIs used to access them,
and the underlying capabilities of the messaging system that deter‐
mine what can and can’t be done using that messaging system as a
target.

In addition to popular on-site messaging systems such as IBM MQ,
Java Message Service (JMS)–based systems, and Kafka, it’s also
important to consider newer cloud native technologies, and technol‐
ogies that span on-premises and cloud such as Solace. Cloud native
systems include Amazon Kinesis, Google Pub/Sub, and Azure Event
Hubs. These, however, require specific APIs to work with them.

JMS offers a common way for Java applications to access any JMS-
compliant system. With JMS-based messaging systems, there are
both queues and topics that can be written into. Both can have
transactional support as well persistent messaging, ensuring that
everything can be guaranteed to be written at least once into JMS
targets.

However, for cases in which exactly-once processing is required,
queues can be challenging. Topics can have multiple subscribers for
the same data, so it’s possible, such as in the case of restart after fail‐
ure, to query a topic to determine what has been written. Queues are
typically peer to peer and thus cannot be queried in the same way
and need different strategies to ensure exactly-once processing. We
discuss this more in Chapter 7.

On the other hand, if you use a Kafka-based messaging system,
every reader of a topic is independent, and maintains its own index
of what has been written, allowing you to get around this challenge.
Although Kafka is very popular, it’s not the only messaging system
out there, and streaming integration platforms that work only with
Kafka are extremely limiting.

JMS-based messaging systems give you the ability to integrate with a
lot of different messaging systems through a single technique. Alter‐
natively, generic protocols like Advanced Message Queuing Proto‐
col (AMQP) allow you to work with many different providers.
Which approach you choose depends on your specific use case.
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Application Programming Interfaces
It may also be important to deliver real-time data to a target destina‐
tion through application programming interfaces (APIs). This isn’t a
new subject because all of the target technologies we’ve discussed
also work through APIs. JMS has an API, Kafka has an API, data‐
bases have APIs, and at the lowest level, you have APIs to write to
files, as well.

But when we talk about APIs in this section, we’re focusing on busi‐
ness application–level APIs. The working definition of API we’re
using is: an interface or communication protocol that dictates how
two systems can interact. These can be RESTful APIs or streaming
socket–based APIs. But they have the same goal: to deliver real-time
streaming data directly into an application.

For example, the Salesforce API would provide the ability to write
into Salesforce and update records continually using streaming data.
APIs can be used to deliver data continuously to everything from a
mission-critical enterprise application, to a project-management
support system, to a bug-tracking system, to keep them up to date.
The suitability of any particular API for delivery from streaming
integration depends a lot on workload and the API mechanism.
RESTful APIs which require a request/response per payload might
not scale to high-throughput rates, unless they are called with
microbatches of data. Streaming APIs such as WebSockets can scale
more easily but often require more robust connection management
to avoid timeouts and handle failures.

Cloud Technologies
Working with cloud technologies is essential for any streaming inte‐
gration platform because so many streaming use cases involve mov‐
ing data continuously in real time from an on-site application to the
cloud.

From a streaming integration perspective, cloud technologies aren’t
that different to working with their on-premises counterparts,
including databases, files, and messaging systems. What is different
is how you connect into the cloud.

It’s important to understand that each cloud vendor has its own
security mechanisms. These are proprietary security rules that you
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must follow, and they include proprietary ways to generate the keys
needed to connect. Each cloud vendor also has its own secure access
control. Therefore, in addition to thinking about the target technol‐
ogy itself – the database, the file system, the messaging system – you
need to consider how you use that technology to access whatever
cloud vendor(s) you select (Figure 6-1).

Figure 6-1. A streaming platform should support different technologies
across cloud vendors

Streaming integration platforms should support all of this. Data‐
bases, data warehouses, storage, messaging systems, Hadoop
infrastructures, and other target technologies should be able to con‐
nect to and across Google Cloud, Amazon AWS, and Microsoft
Azure. And, significantly, not only should your streaming platform
support all these different technologies across all these different
clouds, they must support multiple instances of them across multi‐
ple cloud platforms.

Here are some considerations when the cloud is your target for
streaming data integration:

• What cloud platform should you choose (or which one[s] have
already been chosen at your organization)?

• Who manages the cloud?
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• Am I allowed to access it directly, or do I need to use an inter‐
nally defined proxy?

• How do I access it?
• What authentication do I need?
• Where do I store credentials to get in?

Many quite complicated cloud use cases exist. For example, some
digital transformation use cases involve two-way moving of data
from on premises up to the cloud and then back down from the
cloud to on premises. Some involve multicloud scenarios with
single-source data, some of which is going into one cloud technol‐
ogy hosted by one cloud provider, others going into another cloud
technology hosted by another cloud provider.

You even have intercloud use cases. That’s when the streaming inte‐
gration platform is used to synchronize a database provided by one
cloud provider, say AWS, into a database on another cloud provider,
like Google. The reason you might do this is to have a totally redun‐
dant backup that’s continually updated and hosted by a different
cloud provider for peace of mind.

In summary, delivery into cloud by definition involves working both
with the target technology you choose, but also working with a par‐
ticular cloud or clouds. Much depends on the source of the data and
the purpose of the integration. Keep in mind, additionally, that all of
these different technologies to choose from as targets could also be
used as sources from the cloud, as discussed in Chapter 2.

Visualization
When attempting to manage all these data pipelines, streaming inte‐
grations, data processing, and data analytics you have put into place,
it is natural to want to know: what is happening? You might want to
simply do basic monitoring, but more frequently you will have par‐
ticular SLAs or key performance indicators (KPIs) that you need to
attain. You might want to trigger alerts if analytics identifies that cer‐
tain thresholds have been breached. In these cases, you want some
sort of visualization.

Visualization in streaming integration is a little different to what
most people are accustomed to in BI applications. This is because
the data being visualized is moving in real time. You’re seeing
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up-to-the-second results of the analytics that you’ve done. You’re
seeing what’s happening right now.

So, visualization for real-time data must support continuous and
rapidly changing data. Your streaming platform needs to support
mechanisms for displaying this data: be capable of producing differ‐
ent charts, graphs, tables, and other options for viewing the data.
Perhaps you are tracking multiple KPIs or SLAs. Maybe you want to
track alerts or anomalies detected. You might want to look at trend
lines and see the direction in which your data is heading.

It might also be important that you can drill down from a high-level
view to a more detailed view. This could be based on analytics to get
more insight into real-time data. Being able to dynamically filter
data is critical when it comes to real-time visualization. And this
should be easy to do; your users should have as easy a time working
with real-time streaming data through an integration platform as
they do working with large amounts of static data through standard
business intelligence tools.
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CHAPTER 7

Mission Criticality

When it comes to streaming integration – or simply any type of real-
time data processing – it’s fairly straightforward to build the integra‐
tions we’ve been talking about in a lab scenario. You can try it, piece
it together with bits of open source, test it, and generally get things
working as a viable proof of concept (POC).

But, when it comes time to put these things into production, that’s
another matter altogether. When building continuous data pipelines
that need to run around the clock and support the applications that
the business depends upon, then many questions arise:

• How do I make sure that it works 24/7?
• How do I ensure that it can handle failure?
• How can I be sure that it can scale to the levels I need it to, given

the expected growth of data within my organization?
• How do I make sure that the data remains secure as it moves

around the enterprise at high speeds?

This is all about mission criticality. And it can’t be an afterthought.
You need to design your streaming integration infrastructure with
mission criticality in mind. This is one of the biggest issues to con‐
sider when investigating streaming integration platforms.
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1 Clustering refers here to a set of nodes that are ready to run one or more streaming
pipeline. There are no jobs in streaming, because they run continually. After the pipe‐
lines are deployed to the cluster they run until stopped.

Clustering
We’ve talked about the benefits of building a distributed platform
for scaling streaming integration. Clustering1 is one of the most
popular methods for building a distributed environment. But there
are several ways to build a scalable and reliable cluster. Your choice
of stream-processing platform becomes critical at this point. When
doing your due diligence, make sure that the platform has the fol‐
lowing characteristics:

• Requires little upfront configuration
• Is self-managing and self-governing
• Allows users to add and remove cluster nodes without inter‐

rupting processing flow

The old-school way of scaling was to have a standalone node that
could be scaled up by adding hardware. You would simply add more
CPUs and more memory to that standalone machine. Of course, for
reliability reasons, you would have replicated the application and its
data to a backup node and switched over to it in case of failure.
That’s how most enterprises structured their databases.

Early incarnations of stream processing used the same paradigm.
Because distributed architecture had not yet reached mainstream,
the pioneers of stream processing relied on scaling on top of a single
machine. But there are limitations to this approach. Among other
things, memory management in a Java-based environment causes
performance to suffer if you take the single-processor route.

However, with the new breed of stream processing, we use a modern
method, one made popular by the Hadoop approach to big data.
This paradigm involves building large, scalable clusters of nodes
over which the stream integration and processing can be distributed.

Because of this, it’s important that the stream integration platform
you choose supports clustering. It should also be able to handle scal‐
ability, failover, and recovery by distributing the load or failing over
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the load to another node in the cluster if one or more machines go
down.

Your streaming integration platform must also make all of this easy
to work with. Some platforms are very configuration heavy, espe‐
cially in the Hadoop world, and you must do an immense amount of
configuration upfront to determine which nodes in a cluster should
take on which tasks and what purpose each node serves. That’s why
we recommend choosing a platform that has a “low-touch” way of
building out a cluster.

The low-touch approach basically allows the software to determine
what’s best. Effectively, you start up a certain number of nodes, those
nodes talk among themselves, and they automatically determine
which nodes services should run on, including management serv‐
ices, monitoring services, and all the required other services to keep
stream integration and processing humming along nicely. Addition‐
ally, a low-touch stream integration platform allows you to add or
remove nodes without interrupting processing.

Scalability and Performance
Scalability is obviously an essential aspect of building a successful
stream integration system. As we discussed in the previous section,
you need to do this very differently from the traditional ways that
enterprises have approached scalability. There’s only so much you
can scale on a single node.

So scaling out rather than scaling up is best (Figure 7-1). But as we
explained, your stream integration platform should be able to add
additional nodes to the cluster as necessary, as the load increases.
Additionally, the cluster should be self-aware, aware of the resources
it’s using on every node, and be able to distribute the load and scal‐
ing out as necessary to maintain performance.
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Figure 7-1. Scaling out using clustering

Keep in mind that different parts of the architecture can require dif‐
ferent scale-out capabilities. It might be possible to read incoming
data at a certain rate. For example, one part might be reading
changes that are happening within a database at a rate of 100,000
changes per second. But, downstream from that, some processing
might be necessary, and maybe that processing is quite complex, and
the fastest that processing task can run is 25,000 changes per second.
In such a case, you have a problem.

If a distributed clustered streaming integration platform is designed
well, it should be possible to partition the events that are being pro‐
cessed over the available nodes. For example, if there are four nodes
in the cluster, the streaming integration platform should be able to
partition the processing over those nodes, with each one processing
25,000 changes per second. Overall, that downstream processing is
occurring at 100,000 per second, keeping up with your reader.

Not only should you be able to parallelize events and have different
pieces of that streaming architecture running in different volumes
around the cluster, you should also be able to dictate which pieces
scale. For example, you might not be able to scale the reader, because
it will work only if it has one connection into your source. Perhaps
you’re reading from a database change log, or you’re reading from a
messaging queue that can have only one reader to guarantee the
order of events. In those cases, you don’t want to scale the reader,
but you might want to scale the processing. Make sure that the
streaming platform you choose allows you to do this.

To give another example, in our experience, the biggest bottleneck
to a distributed clustered architecture like this is the writing into the
various targets (Chapter 6). You might want to have a single reader,
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maybe some parallelism across the cluster for the processing, but
you might want even more parallelism in the writing side, for the
data targets. In such cases, it’s crucial that you can scale not just the
cluster, but the individual streaming components that are running
within the cluster.

This brings us to an important point to make about scalability: it is
irrevocably tied to performance. The example we just gave – the
need to be able to scale individual streaming components within a
cluster – is critical for performance.

Another important scalability-related performance concept is that
you should attempt to do everything on a single node, as much as is
possible. This includes reading from a source, all the processing, and
the writing to a target. A single node should handle it all.

This is because every time data is moved between nodes, either on a
single machine or on separate physical machines, data is moving
over the network. This involves serialization and deserialization of
the objects that you’re working with, which inevitably adds over‐
head.

In environments that require high levels of security, that data might
also be encrypted as it moves over the network. In such cases, you
need to worry about network bandwidth and also the additional
CPU usage required to serialize and deserialize, and encrypt and
decrypt, that data.

From a performance perspective, when designing data flows, you
want to try and keep those hops between physical instances of the
cluster as low as possible. Ideally, you would read once, and if you
need to distribute it out over a cluster for processing, you would do
that once, but then it should stay on the same nodes as it passes
down the data pipeline. Similarly, for performance reasons, you
don’t want to allow input/output (I/O) functions such as writing to
disk between individual processing steps.

Enterprises struggle with streaming integration architectures
because of these challenges. As a result, they end up with unneces‐
sary overhead on their distributed environments. For example, if
utilizing a persistent messaging system between every step in the
data pipeline, it is physically writing over the network, serializing
the data, maybe encrypting it, writing it to disk, then reading from
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disk, and then deserializing it and possibly having to decrypt it, as
well. That’s a long pipeline.

That is going to add overhead, and in high-performance, scalable,
low-latency systems, you want to minimize overhead. So as much as
possible, try to avoid I/O, and stick to in-memory processing of data
only.

Constant serialization and deserialization of data can also be a prob‐
lem. Ideally, your streaming platform should make this easy to do.
For example, if you’re choosing to work with SQL for ease-of-use
reasons, you still want to make sure that at runtime it is as fast as if
you’d actually written custom code yourself. So, deploy a stream
integration platform that gives you highly optimized code even if
generated by SQL.

Another point related to scalability and performance: as we men‐
tioned before, when working with distributed caches, it’s important
to make sure that if you’re joining event data with data that you’ve
loaded into memory in a distributed cache, for either reference or
context purposes, you still can bring the event to the physical
machine that actually possesses the data for that cache. That’s
because the cache itself can be distributed.

Some of the data will be present on only some of the nodes in the
cluster. You want to make sure that each event lands on a node in
the cluster that physically has the data that it’s going to join with.
Otherwise, a remote lookup will be necessary, invoking serialization
and deserialization and significantly slowing performance.

In summary, when evaluating stream processing platforms, be cau‐
tious. A system might work well when testing in a lab with low
throughput, when scalability isn’t a factor. Before going into produc‐
tion, you will need to perform scalability tests to ensure that your
distributed architecture will work – and stay low-latency – when
processing high-volume loads.

Failover and Reliability
The next three topics we cover – failover, recovery, and exactly-once
processing – are about reliability: how to ensure that you can
recover data, events, and processing results in case of a system fail‐
ure, large or small.
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First, failover. The stream-processing platform you choose needs to
recognize that failures can and will happen and must have ways of
dealing with those failures.

There are many different types of failure. There are physical
machine crashes, and there are software crashes. There are problems
reading from data sources. There are difficulties writing into targets
that are outside of the platform. There may be issues with the net‐
work, causing extended outages. The streaming integration platform
needs to be able to be aware that these things happen. Your platform
needs to be able to handle all of them effectively and with ease.

In the case of the failure of a single node in the cluster that’s doing
stream processing, you should be able to failover data flow to
another node, or another set of nodes, and have it pick up where it
left off, without losing anything.

This is where the cluster comes in with regard to reliability. For scal‐
ability, as you recall, the cluster is important because of parallelism.
For reliability, it’s important that you have redundancy so that you
can easily have an application automatically failover to other nodes
if the node that the application is running on goes down for some
reason.

In scalability, we talked about adding nodes to scale. You also want
to add nodes so that the cluster can handle nodes disappearing, and
still maintain the application.

Now, operating in a cluster doesn’t necessarily mean that the appli‐
cation will continue running uninterrupted. If all of the pieces of an
application are running on a single node that goes down, by defini‐
tion, it’s going to be interrupted. The point of failover, however, it
should be able to pick up from where it left off, and catch up, using
the same recovery techniques that we discuss in the next section.

From an external perspective, there may be a slight bump in the
processing rate, but after a period of time, things should go back to
normal without losing any data.
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Recovery
Recovery is about coming back from a failure with operations and
data intact.

You might not necessarily care whether you lose some data in a fail‐
ure. Completely recovering from a failure might not be a significant
issue in such cases. Perhaps you’re monitoring a real-time IoT
device. Even if you miss some data while things are failing over, the
results of the analysis aren’t going to be affected. You just might have
a short period of time in which you don’t have insight into the
device you are monitoring.

But in most cases – especially when the application is mission-
critical and the results have to accurately represent all the incoming
data – full recovery becomes very important.

There are quite a few recovery strategies employed by streaming
integration platforms. For example, a platform can replicate states,
so that for every operation that occurs on one node, the state
required for that tool occurs on another node.

The issue is that it takes bandwidth and resources to do that replica‐
tion. If you’re doing it for every event that’s coming in, that process
is going to consume a lot of additional resources, which could con‐
siderably slow down the data flow. After all, replicating requires net‐
work transformation in the form of all the serialization and
deserialization we’ve discussed. That will severely slow things down.

An alternate way of handling recovery is to enable checkpointing.
Checkpointing means that you are periodically recording where you
are in terms of the processing. What was the last event received?
What was the last event output from the system before it went
down?

Checkpointing takes into account the different types of constructs
that can exist between a source and a target. That includes queries,
windows, pattern matching, event buffers, and anything else that
happens to the data. For example, you might be joining messages
together, you might be discarding messages, or you might be aggre‐
gating certain pieces of data before you output it into a target. So, it’s
not necessarily a case of simply remembering the last event that
came into the system.
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There is a caveat: using checkpointing for recovery does require
rewindable data sources. If you are recording states using check‐
pointing, perhaps while utilizing data windows, and you have a
minute’s worth of data in a window to recover, you need to rebuild
that minute’s worth of data, and then pick up outputting data after
you get to the point where you’re able to start processing again.

Effectively, a low “watermark” in checkpointing is a pointer into
your data source that represents the first event from which you need
to rebuild the state: the point of failover. A high watermark is the
first new event that needs to be processed.

This means that if an entire cluster fails, you would need to be able
to go back in time and ask your data sources, “please give me the last
minute’s worth of data again.” And although it’s possible to go back
in time and reread data with certain types of data sources such as
change data or file sources, with other types of data sources it simply
won’t work. Certain messaging systems, and especially IoT data, for
example, are not rewindable. First, you might not be able to contact
them in that way. Second, they might not record that amount of
information themselves. Small IoT devices, for example, physically
might not be able to replay the data.

That’s where the persistent data streams that we talked about earlier
in the book become important. They record all of the incoming data
at the source so that when you are in a recovery situation, you can
rewind into that data stream, pick up from the low watermark, and
then continue processing when you get to the high watermark.
When using persistent data streams, using checkpointing for recov‐
ery has a much lower impact on processing because you need only
periodically record checkpoints.

Of course, even the mechanism where you replicate a state across a
cluster could fail if the entire cluster disappeared. Some of the
checkpointing could have issues in the place where you’re recording
where the checkpoint has disappeared.

One of the strategies to deal with that is to record checkpoints
alongside a target. For example, say you are writing to a database as
a target, and the data delivered are the results of stream processing.
If you could write the checkpoint information also into that data‐
base, you could always pick up from where you left off. That’s
because the data is present with the data target that you’re writing to.
The information about how the target got into this state is also
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present within the target. That’s true for databases. It can also be true
for messaging systems and some other types of targets, as well.

Exactly-Once Processing
Understanding recovery brings us to the different types of reliability
guarantees that you can have in a streaming integration system. For
the purposes of this book, there are at-least-once processing and
exactly-once processing.

At-least-once processing is where you guarantee that every incom‐
ing message will be read and delivered to a target. But it doesn’t
guarantee that it will be delivered to a target only once.

Exactly-once processing is what it sounds like. It means that every
incoming event is processed, but you write the results of that pro‐
cessing only once to the target. Once exactly. You do not write it
again. You never have duplicates.

Why does this matter? Some recovery scenarios, trying to be extra
cautious not to miss anything, might write data or events or other
functions into a target where they have already been written. That
works satisfactorily in some circumstances, either because the target
can deal with it, or downstream processing from the target can
handle it.

But there are other cases for which you do need exactly-once pro‐
cessing. This isn’t possible all the time, but theoretically it is possible
for situations in which you can write checkpointing information
into the target. It’s also possible where you can ask the target, “what
was the last event that was given to you?” Then, based on that, the
platform can determine the next data it should be given.

By validating the data that’s been written to a target, by writing
checkpoints to a target, or by including metadata in the data that
you write to a target, you can ensure exactly-once processing.

Security
The final criteria around mission criticality is security (Figure 7-2).
The three major issues about security when it comes to stream pro‐
cessing are as follows:
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• Ensuring that you have policies around who can do what to the
data

• Encrypting data in flight
• Encrypting data at rest

Figure 7-2. Various forms of security applied to streaming data

In this section, we’ll discuss these three issues.

Access Control
The first aspect of security centers around who has access. That
means the importance of being able to stipulate which individuals
are authorized to work with data streams, who can start and stop
applications, and who can view data but do nothing else.

For this type of security, you need to make sure that the stream-
processing platform you’re using has end-to-end, policy-based secu‐
rity. You need to be able to define different sets of users, and which
kinds of permissions each set possesses.

With leading streaming-integration platforms that also offer analyt‐
ics, you should also be able to specify which users can build data
flows. Perhaps some users are restricted to only setting up initial
data sources. Other users can’t access those data sources but can
work with preprocessed streams. Still other users can build dash‐
boards and analytics. And finally, those who are often called “end”
users, who are only authorized to view the end result of the analyt‐
ics. They can simply work with the final dashboards, and that’s it.
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In summary, you can have developers, and you can have administra‐
tors and monitors of data. And then you can have end users who are
looking at analytics results. Each has access to different aspects of
the data.

Another part of security involves being able to identify intermediate
raw data streams that might contain PII or other sensitive data. For
example, a data flow might exist in which you obfuscate, or mask,
some of that data. Because the data is going to be used for analytics,
it’s not necessary to have the real data there. In fact, having the raw
data displayed could be a security issue.

In such scenarios, the streaming platform’s authorization mecha‐
nism and policies kick in. You could make sure that people only
were authorized to access the intermediate data streams, the ones
that contained the obfuscated sensitive data.

These kinds of security policies, security restrictions, and user access
rights need to be able to be applied across all of the components in a
homogeneous way.

Encrypting Data in Flight
The other side of security revolves around data protection, which is
ensuring that data is encrypted and thus not visible to unauthorized
users. Because streaming platforms typically aren’t persisting data –
unless you’re using a persistent data stream – and they’re not writing
to intermediate data stores, the most important place that data can
be encrypted is within the data streams themselves, when they’re
moving from node to node.

They’re going across a network, so it’s essential that a stream-
processing platform permits you to encrypt the data as it’s flowing
across a network, in an industry-standard way, based on what your
company policies are.

But also, if you are utilizing persistent data streams that do write
data to disk, those persistent streams should also be encrypted, as
well, almost by default, because you are writing it to disk.

Thus, encrypting data in stream, as it’s moving, or if it’s being stored
in a persistent data stream, is essential.
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Encrypting Data at Rest
When writing data to targets, your streaming platform should have
the ability to encrypt data based on the capabilities of the targets. It
should be able to provide the correct configuration and credentials
to enable whatever encryption is available with that target. However,
for the security-conscious organization, encrypting data with its
own keys and algorithms, and managing keys security should also
be possible through the streaming-integration platform.

Additionally, typically sources and targets often contain important
information that must remain secret. A database might possess a
password that is needed to connect to it. Or a cloud service might
have an access key to allow connection. Your stream processing plat‐
form must protect that information by encrypting it in an industry-
standard way so that no one can hack in and acquire credentials that
give them access to sensitive systems.

These represent the three most critical considerations about security
and streaming platforms. The ability to address security within your
streaming integration solution is key to supporting mission-critical
applications.
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CHAPTER 8

Conclusion

We are entering a new era – the era of real-time data. This data is
driving a vast digital transformation, where even the most conserva‐
tive enterprises are modernizing through technology and the data it
provides. The goal? To elevate the customer experience, optimize
processes, and outperform the competition. This is happening on a
global scale. We called this data modernization, and streaming inte‐
gration is its engine, providing the way to realize value from this
modernization and from the real-time data fueling it.

In this book, we described how to achieve data modernization
through streaming integration in detail to help you understand how
it can be applied to solve the very real business challenges you face
in a world transformed by digital technologies. We started with a
history of data, before introducing and defining the idea of stream‐
ing integration and why it is so critical to businesses today.

We saw how streaming integration can solve disparate use cases, by
driving hybrid cloud adoption and providing a platform for real-
time applications while also being the engine delivering continuous
data for a variety of reporting and analytics purposes. Whether an
organization is performing a zero-downtime data migration to a
cloud database; continually updating a data warehouse; collecting,
aggregating and reacting to IoT data, or performing real-time
machine learning predictions, streaming integration can allow busi‐
nesses to reap immediate benefits.

Building streaming data pipelines is the first important step. Then,
stream processing – getting the data into the form that is needed
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through filtering, transformation, enrichment, and correlation –
becomes critical before advancing to streaming analytics. We wrap‐
ped up the book talking about data delivery and visualization, and,
finally, about the mission-criticality of data.

Throughout this book, we discussed what organizations should
expect of an enterprise-grade streaming integration platform to real‐
ize the value in their real-time data. Such a platform needs, at a min‐
imum, to offer continuous real-time data ingestion from a broad
range of heterogeneous sources, high-speed in-flight stream pro‐
cessing, and sub-second delivery of data to both cloud and on-
premises endpoints in the correct format to be immediately
available to their high-value operational workloads.

It is essential that such a platform is also highly scalable, reliable,
and secure, and provides an intuitive GUI interface to facilitate
transformation of real-time stream processing into an organiza‐
tional asset that delivers both bottom- and top-line benefits to the
enterprise.

By utilizing a streaming integration platform that operates in-
memory, provides CDC and other ingestion capabilities, and works
in today’s distributed hybrid technology environments, enterprises
can perform data modernization initiatives that were impossible
using batch or legacy integration techniques.

Streaming integration is truly the engine of digital transformation.
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